首页|基于BP神经网络的复合材料螺栓连接强度预测

基于BP神经网络的复合材料螺栓连接强度预测

扫码查看
针对复合材料螺栓连接强度预测问题,设计拉伸试验并记录极限载荷。将试验变量数值化抽象为神经网络输入神经元参数,基于BP神经网络理论,建立强度预测模型。使用三组预留的试验结果验证模型的准确性,三个测试组预测误差分别为6。13%、1。63%、3。34%。调整训练组的组成并重新训练模型,结果表明,本文模型针对训练组未出现参数值有着较好的预测能力。最后建立有限元分析模型进行对比分析,结果表明,针对复合材料螺栓连接强度预测问题,相比有限元方法,神经网络方法精度相当,且具有明显的速度优势。
Strength prediction of composite material bolted joints based on BP neural networks
To predict the strength of composite bolt connections,tensile tests were designed and the ultimate loads were recorded.The test variables were quantified as input parameters for the neural network model.A BP neu-ral network was used to train the model.Three reserved test results were used to validate the model's accuracy.The prediction errors for the three test groups were 6.13%,1.63%,and 3.34%respectively.The composition of the training groups was adjusted and the model was retrained.The results showed that the model had excellent predictive ability for new variable values.Finally,a finite element analysis model was established for comparison with the neu-ral network.The results indicated that compared to the finite element method,the neural network approach could predict the strength of composite bolt connections more quickly with the same precision.

composite materialbolted connectionneural networksstrength prediction

叶梯、冯灏、李果

展开 >

中国民用航空飞行学院 航空工程学院,广汉 618307

复合材料 螺栓连接 神经网络 强度预测

2025

复合材料科学与工程
北京玻璃钢研究设计院有限公司

复合材料科学与工程

北大核心
影响因子:0.796
ISSN:2096-8000
年,卷(期):2025.(1)