首页|基于回归分析的Mar M247镍基高温合金喷砂工艺预测与优化

基于回归分析的Mar M247镍基高温合金喷砂工艺预测与优化

扫码查看
目的 针对燃机叶片用Mar M247镍基高温合金,建立多因素喷砂工艺的高精度预测模型,筛选出粗糙度较高而夹砂率较低的工艺组合.方法 采用国产精工自动化精控喷砂系统制备试样.使用便携式表面粗糙度仪、激光显微镜和扫描电子显微镜进行检测.基于数理统计的分析方法,建立喷砂工艺与表面质量之间的函数关系.结果 当喷砂角度从30°增至90°时,粗糙度和夹砂率都单调递增,且夹砂率在低角度(30°~60°)比在高角度(60°~90°)增加的速率更高.喷枪移动速度从1 mm/s增至20 mm/s,粗糙度呈现先减少后增加再减少的趋势;夹砂率呈现先增加后减少的趋势.对于粗糙度,线性回归模型的预测误差率为5.97%,多项式回归模型的预测误差率为 5.15%;对于夹砂率,线性回归模型的预测误差率为 5.76%,多项式回归模型的预测误差率为 3.08%.结论 基于现有的数据,采用多项式和线性 2 种回归模型进行预测,多项式回归模型的预测精度比线性回归模型更高.结合现有的数据和多项式回归模型的预测数据得出了最佳工艺范围,喷砂压力为 0.2~0.3 MPa,喷砂角度为 45°~60°,喷枪移动速度为 15~20 mm/s.在该条件下,得到了较高的粗糙度和较低的夹砂率,有利于获得高的涂层/基材界面结合强度.
Prediction and Optimization of Sandblasting Process for Mar M247 Nickel-based Superalloy Based on Regression Analysis
The work aims to establish a high-precision model of the multivariate sandblasting process for Mar M247 Ni-based superalloy used as gas turbine blade and used it to design the process combination that can realize surface quality of high roughness and low fraction of retained grit.The sandblasting specimens were prepared by an automated precision controlled sandblasting system made in China and then the surface quality was examined by roughness detector and scanning electron microscopy and the relationship between the sandblasting processing and the surface quality was established based on the mathematical statistics theory.With the sandblasting angle increasing from 30° to 90°,both the roughness and fraction of retained grit increased and the increasing trend was more pronounced at low angle range(30°-60°)as compared to that at high angle range(60°-90°).With the pressure of 0.3 MPa and the sandblasting gun moving velocity of 5 mm/s as example,as the sandblasting angle increased from 30° to 90°,the fraction of retained grit increased from 12.84%to 24.31%,the average size of retained grit increased from(32.10±0.47)μm to(60.77±0.50)μm,and the roughness increased from(5.88±0.48)μm to(7.80±0.41)μm.With sandblasting gun moving velocity increasing from 1 mm/s to 20 mm/s,the fraction of retained grit showed a trend of firstly increasing and then decreasing.In contrast,the roughness decreased firstly at low gun moving velocity,then increased with further increase in gun moving velocity,and again decreased at high gun moving velocity.With the pressure of 0.3 MPa and the sandblasting angle of 60° as an example,as the sandblasting gun moving velocity increased from 1 mm/s to 20 mm/s,the fraction of retained grit firstly increased from 20.70%to 23.54%,and then decreased to 21.94%,the average size of retained grit increased from(51.75±0.26)μm to(58.85±0.45)μm and then decreased to(54.85±36)μm.In the meantime,the roughness firstly increased from(7.55±0.24)μm to(9.11±0.52)μm and then decreased to(8.72±0.32)μm.For the prediction precision of roughness,the prediction error of linear regression model was 5.97%,while that of polynomial regression model was 5.15%.For the prediction precision of the fraction of retained grit,the prediction error of linear regression model was 5.76%,while that of polynomial regression model was 3.08%.Based on existing data,the polynomial and linear regression models can be used for prediction.By comparing the linear regression model with the polynomial regression model,a higher prediction precision is obtained for the polynomial regression model.By analyzing the data predicted by polynomial regression model,the ideal processing parameter window is the sandblasting pressure range of 0.2-0.3 MPa,sandblasting angel range of 45°-60° and sandblasting gun moving velocity range of 15-20 mm/s.Under the selected conditions,the high roughness and low fraction of retained grit are resulted,which assists in forming a high bonding strength of interface between coating and substrate.

nickel-based superalloysandblastingsurface qualitymathematical statisticsregression analysisprocess optimization

骆晓雨、方伦彬、袁小虎、乔翔、赖建平、余家欣

展开 >

西南科技大学 制造科学与工程学院,四川 绵阳 621010

清洁高效透平动力装备全国重点实验室,四川 德阳 618000

重庆大学 材料科学与工程学院,重庆 400044

长沙县市场监督管理局,长沙 410100

展开 >

镍基高温合金 喷砂工艺 表面质量 数理统计 回归分析 工艺预测

国家科技重大专项国家重点研发计划西南科技大学研究生创新基金清洁高效透平动力装备全国重点实验室开放课题

2019-711-0007-01472020YFB201040224ycx2044DEC8300CG202319357EE280491

2024

表面技术
中国兵器工业第五九研究所,中国兵工学会防腐包装分会,中国兵器工业防腐包装情报网

表面技术

CSTPCD北大核心
影响因子:1.39
ISSN:1001-3660
年,卷(期):2024.53(17)