首页|双膜层ITO/SiO2薄膜制备及其膜电阻均匀性研究

双膜层ITO/SiO2薄膜制备及其膜电阻均匀性研究

扫码查看
目的 通过双膜层结构设计制备ITO/SiO2薄膜,研究了靶面磁场强度、镀膜工件移动速度、镀膜功率对ITO/SiO2薄膜膜电阻均匀性的影响,并研究了优化条件制备的ITO/SiO2薄膜物相、形貌和结构,并通过元素分布分析探讨了 SiO2薄膜的作用.方法 利用磁控溅射法在TN玻璃基板上沉积生成SiO2薄膜,然后再沉积氧化铟锡(ITO)薄膜,制备ITO/SiO2薄膜样品.利用X射线衍射仪(XRD)、ST-21L型薄膜膜电阻测试仪、原子力显微镜(AFM)、透射电镜(TEM)等仪器,研究了靶面磁场强度、镀膜工件移动速度、镀膜功率对ITO/SiO2薄膜膜电阻均匀性的影响,并研究了优化条件制备的ITO/SiO2薄膜样品的物相结构、表面形貌、截面膜层结构、元素分布与有膜电阻均匀性的关系,探讨了 SiO2薄膜结构与晶粒尺寸效应可能发挥的作用.结果 (1)磁控溅射优化条件下,磁场强度为780~820 Gs,镀膜工件移动速度为1.2m/min,镀膜功率为2.5kW(A21)和3kW(A23)时,ITO/SiO2薄膜膜电阻极差最小为10~11 Ω/sq,平均值为75~76 Ω/sq,ITO/SiO2薄膜膜电阻的均匀性最好.(2)ITO/SiO2薄膜表现出晶体谱线和非晶谱线的叠加,In2O3和SnO2特征峰发生轻微左偏移现象,SiO2特征峰较宽,说明薄膜中的SiO2处于非晶态结构,且可能部分发生晶粒尺寸效应,以微晶或纳米晶的形式存在.(3)ITO/SiO2薄膜表面形貌比起SiO2薄膜更均匀、连续、平滑且较致密,且具有明显的双膜层结构,其中ITO薄膜表面均匀平整且膜厚均匀,这与膜电阻均匀性一致;SiO2薄膜与ITO薄膜和玻璃基底都形成了界面层,应该也是ITO薄膜结合力较好的原因;In元素的流失受到一定阻隔,应该与薄膜中的SiO2的非晶态结构或发生晶粒尺寸效应,以及多晶ITO结构有关.结论 通过优化控制靶面磁场强度、镀膜工件移动速度和镀膜功率等工艺因素,可以提高ITO/SiO2薄膜膜电阻均匀性,同时通过控制SiO2薄膜成膜质量可以改善ITO薄膜质量,并起到阻隔In元素流失的作用.
Preparation and Block Resistance Uniformity of ITO/SiO2 Films with Double Film Layer
According to the product design principle,the double film structure of SiO2/ITO films was designed and prepared.The preparation process is as follows:Si target(purity 99.85%)was used,and ITO target(purity 99.85%)was mixed with 90%indium oxide(In2O3)and 10%tin dioxide(SnO2).TN(Twist Nematic liquid crystal)sodium-calcium glass substrate was selected,size 16"×14"×1.1 mm,one side coating.Through magnetron sputtering and continuous coating magnetron sputtering,production line test equipment was used to carry out process design for TN series glass,requiring block resistance uniformity range of 70-90 Ω/sq.,coating in a 10 000 clean workshop at control humidity of 30%-70%RH.The TN sodium-calcium glass substrate was placed on the frame,the height of the frame was approximately equal to the height of the coating equipment,and the frame was transported by the conveyor belt through the coating machine for coating.The first vacuum extraction treatment of the coating machine was carried out to ensure the stability of the atmosphere during the coating process,and then it was sent to the inlet chamber,transition chamber,variable speed chamber,and then the coating chamber for Si target and ITO target for coating.The deposited Si film was oxidized to form a SiO2 film,and after coating,it was sent to the variable speed chamber,transition chamber,and outlet chamber in turn to fill air for natural cooling to prevent the glass from being damaged due to the large pressure difference between inside and outside.The effects of target magnetic field intensity,coating work-piece moving speed and coating power on the film resistance uniformity of ITO/SiC2 films were studied by X-ray diffractometer(XRD),ST-21L film resistance tester,atomic force microscope(AFM)and FIB sample preparation transmission electron microscope(TEM).The phase,morphology and structure of ITO/SiO2 films prepared under optimized conditions were studied,and the effects of SiO2 films were discussed through element distribution analysis.The results showed that:(1)Under the optimized conditions of magnetron sputtering,when the magnetic field strength was 780-820 Gs,the motion speed of the coating work-piece was 1.2 m/min,and the coating power was 2.5 kW(A21)and 3 kW(A23),the minimum resistance range of ITO/SiO2 film was 10-11 Q/sq,and the average value was 75-76 Ω/sq.ITO/SiO2 film had the best film resistance uniformity.(2)ITO/SiO2 films showed the superposition of crystal spectral lines and amorphous spectral lines,and the characteristic peaks of In2O3 and SnO2 were slightly shifted to the left.The wide characteristic peaks of SiO2 indicated that SiO2 in the films was in an amorphous structure,and the grain size effect might partially occur,and then existed in the form of microcrystals or nanocrystals.(3)Compared with SiO2 films,the surface topography of ITO/SiO2 films was more uniform,more continuous,smoother and denser,and had an obvious double-film layer structure.The surface of ITO films was uniform and the film thickness was uniform,which was consistent with the uniformity of film resistance.The SiO2 film formed an interface layer with the ITO film and the glass substrate,which should also be the reason why ITO films had good bonding force;the loss of In element was blocked to some extent,which should be related to the amorphous structure of SiO2 in the film or the grain size effect,and the structure of poly crystalline ITO.In summary,the uniformity of ITO/SiO2 film resistance can be improved by optimizing the process factors such as the magnetic field strength of the target surface,the motion speed of the coating work-piece and the coating power,and the quality of ITO films can be improved by controlling the film forming quality of SiO2 films,and the loss of In element can be prevented.

magnetron sputtering methodITO/SiO2 double film layermicrostructureuniformity of block resistance

朱治坤、陈婉婷、陈静、朱常青、刘荣梅

展开 >

芜湖奇瑞信息技术有限公司,安徽芜湖 241007

安徽工程大学材料科学与工程学院,安徽芜湖 241000

芜湖长信科技股份有限公司,安徽芜湖 241007

安徽工程大学化学与环境工程学院,安徽芜湖 241000

展开 >

磁控溅射法 ITO/SiO2双膜层 微观结构 膜电阻均匀性

2024

表面技术
中国兵器工业第五九研究所,中国兵工学会防腐包装分会,中国兵器工业防腐包装情报网

表面技术

CSTPCD北大核心
影响因子:1.39
ISSN:1001-3660
年,卷(期):2024.53(24)