首页|AI辅助下的病变体积评估在新型冠状病毒肺炎临床分型中的应用价值

AI辅助下的病变体积评估在新型冠状病毒肺炎临床分型中的应用价值

扫码查看
目的:探讨人工智能(AI)在不同临床分型新型冠状病毒肺炎CT影像定量评价中的应用价值.方法:以2021年10月到2022年6月间进行胸部CT检查的169例COVID-19患者为研究对象,并分为重症组14例和非重症组155例.收集并回顾性分析患者的一般资料及影像学信息,并在"新冠肺炎CT影像AI定性辅助诊断系统"的辅助下测量并计算各研究对象的病变体积分数、磨玻璃密度影(ground-glass opacities,GGO)体积分数、实变影体积分数、GGO+实变影体积分数以及铺路石征体积分数.采用Mann-Whitney U检验的方法进行两组数据的比较;采用受试者工作特征曲线(ROC)评估上述指标对重症型患者的诊断效能.结果:两组研究对象的病变体积分数和GGO体积分数差异具有统计学意义(P<0.05),而两组实变影体积分数、GGO+实变影体积分数以及铺路石征体积分数的差异无统计学意义(P>0.05).病变体积分数和GGO体积分数进行COVID-19临床分型的敏感度分别为1.000、0.600,特异度分别为0.822、0.923.结论:AI辅助下测量的病变体积分数和GGO体积分数是进行COVID-19临床分型的敏感指标.
Application value of AI-assisted lesion volume assessment in clinical classification of COVID-19
Objective:To explore the application value of artificial intelligence (AI)in quantita-tive evaluation of CT images of different clinical types of COVID-19.Methods:A total of 169 pa-tients with COVID-19 who underwent chest CT examination between October 2021 and June 2022 were included in the study,and were divided into a severe group of 14 cases and a non-severe group of 155 cases.The general data and imaging information of the COVID-19 patients were collected and analyzed retrospectively.The lesion volume fraction,GGO volume fraction,consolidation volume frac-tion,GGO +consolidation volume fraction and crazy-paving pattern volume fraction were measured and calculated with the assistance of the"AI qualitative auxiliary diagnosis system for CT images of COVID-19"provided by BIOMIND.Mann-whitney U test was used to compare the data of the two groups.The receiver operating characteristic curve (ROC)was used to evaluate the diagnostic efficacy of the above indexes in severe patients.Results:There were significant differences in lesion volume fraction and GGO volume fraction between the two groups (P<0.05).However,there was no signifi-cant difference in the volume fraction of consolidation,GGO +consolidation and crazy-paving pat-tern (P>0.05).The sensitivity of lesion volume fraction and GGO volume fraction for clinical classi-fication of COVID-19 was 1 and 0.6,and the specificity was 0.822 and 0.923,respectively.Con-clusion:The lesion volume fraction and GGO volume fraction calculated with the assistance of AI are sensitive indicators for clinical classification of COVID-19.

COVID-19Artificial intelligenceComputed tomography

王海静、陈强、罗琳

展开 >

内蒙古科技大学包头医学院第一附属医院,内蒙古 包头014010

新型冠状病毒肺炎 人工智能 电子计算机断层扫描

内蒙古自治区高等学校科学技术研究项目包头医学院科学研究基金项目

NJZZ21048BYJJ-XG202005

2024

包头医学院学报
内蒙古科技大学包头医学院

包头医学院学报

影响因子:0.543
ISSN:1006-740X
年,卷(期):2024.40(4)
  • 15