首页|基于双重注意力机制WOA-CNN-BiLSTM模型的变压器油温预测方法

基于双重注意力机制WOA-CNN-BiLSTM模型的变压器油温预测方法

扫码查看
针对当前变压器油温预测模型难以充分利用大量时间序列数据的问题,提出一种双重注意力优化WOA-CNN-BiLSTM的变压器油温预测模型.该模型以变压器历史油温数据作为输入,将输入数据通过滑窗法进行升维,通过将通道注意力机制(Channel Attention Mechanism,CAM)即挤压激励模块(Squeeze-Excita-tion-Networks,SENet)与卷积神经网络(Convolutional neural network,CNN)结合挖掘特征关系,并采用双向长短时记忆网络(Bidirectional Long Short-Term Memory,BiLSTM)进一步挖掘时序特征;然后加入时间注意力机制(Time Attention Mechanism,TAM)进行权重分配,将建立好的模型使用鲸鱼算法(Whale Opti-mization Algorithm,WOA)进行超参数寻优,实现变压器油温预测.最后使用实测数据进行算例分析,验证此方法优越性.
Transformer Oil Temperature Prediction Based on WOA-CNN-BiLSTM Model with Dual Attention Mechanism
The current transformer oil temperature prediction model is difficult to make full use of the large amount of time series data,a dual attention optimization WOA-CNN-BiLSTM transformer oil temperature prediction model is proposed.The model takes the transformer historical oil temperature data as input,upgrades the input data through the sliding window method,mines the feature relations by combining the Channel Attention Mechanism(SENet),the squeeze excitation networks(SENet),with the convolutional neu-ral network(CNN),and Bidirectional long and short-term memory network(BiLSTM)is used to further excavate the temporal features.Then,Time Attention Mechanism is added for weight allocation,and the established model is used for hyperparameter opti-mization using whale algorithm to realize the transformer oil temperature prediction.Fi-nally,the measured data are used for case analysis to verify the superiority of this method.

Transformer oil temperature predictionConvolutional neural networkBidirec-tional longshort-term memory networkAttention mechanismWhale algorithm

郭鹏鸿、唐治平、张光昊、王新兵、朱美欣、孔德靖

展开 >

山东电力设备有限公司,山东 济南 250013

天津国电电力新能源开发有限公司,天津 300407

变压器油温预测 卷积神经网络 双向长短期记忆网络 注意力机制 鲸鱼算法

2025

变压器
沈阳变压器研究所

变压器

影响因子:0.825
ISSN:1001-8425
年,卷(期):2025.62(1)