首页|基于随机森林算法的航班延误时间预测模型研究

基于随机森林算法的航班延误时间预测模型研究

Research on Flight Delay Time Prediction Model Based on Random Forest Algorithm

扫码查看
航班延误一直是影响航空公司运行效率和经济效益的关键问题.航班延误时间预测的方法较多,但是存在准确率不高、影响因素考虑不全面等问题.为了解决上述问题,提出了一种基于数据驱动的航班延误时间间接预测模型.该模型以机场协同决策系统的数据为依据,采用随机森林算法,直接预测航班在场停留时间和最终起飞时间,然后计算得出航班延误时间.通过实验数据进行验证,证明该预测模型按照15 mim航班延误标准进行评估的准确率达100%.该模型可以为航空公司的航班延误预测提供支持,从而有针对性地优化机队运行流程,提高运行效率.
Flight delay has long been a critical issue affecting the operational efficiency and economic performance of airlines.While there are various methods for predicting flight delay times,they often suf-fer from challenges such as low accuracy and incomplete consideration of influencing factors.To address these issues,a data-driven indirect prediction model for flight delay time is proposed.This model,based on data from the Airport Collaborative Decision Making(ACDM)system,employs the random forest al-gorithm to predict directly the aircraft's dwell time on the apron and the final departure time,from which the flight delay time is calculated.Validation using experimental data demonstrates a 100% accu-racy rate when evaluated against the 15-minute flight delay standard.This model can support airlines in predicting flight delays,enabling targeted optimization of fleet operation processes to enhance operational efficiency.

flight delayprediction modelrandom forestdata encoding

许振腾、王琪

展开 >

南京工业职业技术大学 航空工程学院,江苏 南京 210046

上海机场(集团)有限公司,上海 201300

航班延误 预测模型 随机森林 数据编码

南京职业技术大学教育研究课题

ZBYB22-01

2024

滨州学院学报
滨州学院

滨州学院学报

影响因子:0.174
ISSN:1673-2618
年,卷(期):2024.40(2)