首页|人工神经网络在肉类产品质量分析中的应用研究进展

人工神经网络在肉类产品质量分析中的应用研究进展

扫码查看
传统的肉类质量评估方法在应对现代食品安全和营养标准的复杂要求时存在局限性。为解决这一问题,科研人员逐渐引入电子鼻和电子舌等先进技术。这些技术因其快速、成本效益高的特点,已在肉类质量的定性分析中取得一定成果,然而这类技术难以满足更高精度的需求。相比之下,人工神经网络(ANN)凭借其强大的非线性映射能力,在食品质量检测领域展现出显著优势,尤其是在肉类质量评估和无损检测方面。本文综述了 ANN在肉类质量评估中的经典应用架构,系统总结了其在鲜肉、鱼虾类及肉制品等的应用成果。未来的研究重点是构建更为精确的预测模型、实现实时监测以及应用多模型融合技术,以进一步提升肉类产品质量检测的智能化水平。
Application of Artificial Neural Networks in Meat Product Quality Analysis:A Review
Traditional methods of meat quality assessment face limitations in addressing the complex demands of modern food safety and nutritional standards.To overcome these challenges,researchers have increasingly introduced advanced technologies such as electronic noses and electronic tongues.These technologies,known for their speed and cost-effectiveness,have shown promising results in the qualitative analysis of meat products,but they are difficult to meet the demands for higher precision.In contrast,artificial neural networks(ANN),with their powerful nonlinear mapping capabilities,have demonstrated significant advantages in the field of food quality assessment,especially in meat quality evaluation and non-destructive testing.The classic application architectures of ANNs are reviewed in meat quality evaluation and their practical applications in various meat products are systematically summarized,including fresh meat,fish,shrimp,and processed meats.Future research may focus on developing more precise predictive models,achieving real-time monitoring,and employing multi-model fusion techniques to further enhance the intelligence of meat product quality assessment.

artificial neural networkmeat productnondestructive testinghuman dietfood quality

钟云飞、周雯暄、陈宇旸、李晓璇、刘丹飞

展开 >

湖南工业大学包装与材料工程学院 湖南 株洲 412007

人工神经网络 肉制品 无损检测 人类饮食 食品质量

2024

包装学报
湖南工业大学

包装学报

影响因子:0.509
ISSN:1674-7100
年,卷(期):2024.16(6)