首页|基于机器学习算法的甘肃省草原地上生物量

基于机器学习算法的甘肃省草原地上生物量

扫码查看
为评估甘肃省草原地上生物量的变化情况,本研究采用甘肃省 2005-2018 年草原地上生物量实测数据以及植被指数和气象等参数,构建多种基于机器学习算法的甘肃省草原生物量反演模型,并对其预测精度进行对比和评价。结果表明:1)随机森林模型更适宜于甘肃省草原地上生物量遥感反演。基于筛选后的 17 个变量的Rborist随机森林模型的反演精度最高,R2 为 0。758。2)甘肃省草原地上生物量均值介于 828。21~1 118。71 kg·hm-2,近 20 年来呈逐年增加趋势,年均增加幅度为 8。13 kg·hm-2(P<0。05)。3)甘肃省 47。41%的草原呈恢复趋势,26%的草原保持稳定,而26。59%的草原呈不同程度的恶化趋势。
Machine learning-based assessment of grassland aboveground biomass in Gansu Province
To evaluate the aboveground biomass of grassland in Gansu Province,several grassland biomass inversion models based on machine learning were constructed by combining the ground sample data for grassland aboveground biomass from 2005 to 2018 in Gansu Province with vegetation index and meteorological factors.Comparison of prediction accuracies for the different models indicated that the Random Forest model had good applicability in the estimation of grassland aboveground biomass in Gansu Province.The main results were as follows:1)Among the constructed machine learning models,the Rborist model demonstrated the highest accuracy,with an R2 of 0.758 based on screened variables.2)Grassland aboveground biomass for Gansu Province estimated from 2000 to 2018 using Rborist(Random Forest,Rborist)model and 17 selected variables indicated an annual increase over the past 20 years,and the average grassland aboveground biomass ranged from 828.21 kg·ha-1 to 1118.71 kg·ha-1.The average annual increase was 8.13 kg·ha-1(P<0.05).3)For the grasslands in Gansu Province,47.41%showed a recovery trend,26%remained stable,and 26.59%showed a deterioration trend of varying degrees.

machine learningforward feature selection algorithmrandom forestvegetation indexbiomass inversionspatial distributioninterannual variation

李霞、刘兴明、孙斌、姜佳昌、俞慧云、吴丹丹、杜笑村、王红霞、贾晶晶、杨红梅

展开 >

甘肃省草原技术推广总站,甘肃兰州 730010

机器学习 前向特征选择算法 随机森林 植被指数 生物量反演 空间分布 年际变化

林草科技创新与国家合作项目

lckjcx202303

2024

草业科学
中国草原学会 兰州大学草地农业科技学院

草业科学

CSTPCD北大核心
影响因子:0.854
ISSN:1001-0629
年,卷(期):2024.41(2)
  • 29