首页|基于GEE的面向对象茶园提取——以我国南方亚热带季风地区典型丘陵山区双江县为例

基于GEE的面向对象茶园提取——以我国南方亚热带季风地区典型丘陵山区双江县为例

扫码查看
科学了解茶园的空间分布对于保护生态环境和维持农业经济可持续发展意义重大。基于Google Earth Engine(GEE)计算平台,以我国南方亚热带季风地区典型丘陵山区双江县为例,利用Sentinel-2遥感影像数据构建光谱、植被指数、纹理和地形特征集,结合简单非迭代聚类算法(SNIC)和机器学习算法-随机森林(RF)、支持向量机(SVM)实现面向对象的茶园提取,并与基于像元的提取方法进行精度对比。结果表明,与基于像元法相比,面向对象法在茶园提取上表现出更好的效果和更高的精度;无论是基于像元还是面向对象的茶园提取,RF算法都比SVM算法更具优势;面向对象的RF方法的茶园提取精度最佳,总体精度为94。9%,茶园的生产者精度和用户精度分别为86。5%和84。2%,表明面向对象法和RF算法在茶园遥感监测和提取方面具有较好的应用优势和潜力。该研究结果可为类似丘陵山区的茶园识别提供参考,并为茶树种植和管理提供决策支撑。
Object-oriented tea plantation extraction based on GEE:The case of Shuangjiang County,a typical hilly mountainous area in the subtropical monsoon region of south China
Scientifically understanding the spatial distribution of tea plantations is important for preserving the ecological environment and maintaining the sustainable development of agricultural economics.Using the Google Earth Engine with Shuangjiang County,a typical hilly and mountainous area in the subtropical monsoon zone in southern China,Sentinel-2 remote sensing image data were used to construct spectral,vegetation index,texture,and topographic feature sets and combined with the simple non-iterative clustering and machine learning algorithms[Random Forest (RF) and Support Vector Machine (SVM)]to realize the object-oriented extraction of the tea plantation.This was compared to pixel-based extraction methods for accuracy.Results indicate that,compared to pixel-based methods,object-oriented extraction demonstrates superior performance and higher accuracy in tea plantation extraction.Regardless of whether pixel-based or object-oriented extraction was employed,the RF algorithm outperformed the SVM algorithm.The object-oriented RF method yielded the highest accuracy at 94.9%,a producer accuracy of 86.5%,and an accuracy of 84.2% for tea plantation extraction.This underscores the favorable application advantages and potential of the object-oriented approach and RF algorithm in remote sensing monitoring and extraction of tea plantations.These results can serve as a reference for identifying tea plantations in similar hilly areas and provide decision support for local tea tree cultivation and management.

Google Earth Enginetea plantationobject-oriented extractionShuangjiang County

唐雪洁、魏彦强、罗栋梁、王鹏龙、王宝、高峰

展开 >

中国科学院西北生态环境资源研究院,甘肃省遥感重点实验室,甘肃兰州 730000

中国科学院大学,北京 100049

中国科学院西北生态环境资源研究院,冻土工程国家重点实验室,甘肃兰州 730000

中国科学院西北生态环境资源研究院,兰州文献情报中心,甘肃兰州 730000

展开 >

Google Earth Engine 茶园 面向对象提取 双江县

地球大数据支撑城市人居环境监测关键技术研究与示范项目

2022YFC3800700

2024

草业科学
中国草原学会 兰州大学草地农业科技学院

草业科学

CSTPCD北大核心
影响因子:0.854
ISSN:1001-0629
年,卷(期):2024.41(8)