首页|机理模型与遥感数据同化的草地生物量估算相关研究

机理模型与遥感数据同化的草地生物量估算相关研究

扫码查看
受人为和气候变化的影响,草地退化、沙化的现象愈发严重,对草地的监测和保护亦变得愈发重要。生物量是评价草地生态状况的重要指标之一,草地生物量的估算对草地资源管理、生态修复与保护都有着重要的意义。随着遥感技术的发展与植被机理模型的广泛应用,针对草地生物量的估算方法也不断发展,主要分为遥感反演和植被机理模型估算两种方法。本文系统地阐述了遥感反演中的经验回归方法和辐射传输模型,还有基于植被机理的作物生长模型和草地生长模型。此外,本文还介绍了在农业估产领域已经被广泛应用的数据同化技术,分析了在草地生物量同化估算过程中,遥感数据与机理模型存在的互补优势,提出了目前存在的问题,并指出在简化模型的同时,保证估算的稳定性和准确性并兼顾植被的机理性是未来草地生物量估算的研究重点。
A review of research on grassland biomass estimation based on remote sensing and mechanistic models
Grassland degradation and desertification are increasingly becoming serious problems owing to anthropogenic and climate change impacts,making the monitoring and protection of grasslands evermore critical tasks. Biomass is an important indicator of the ecological status of grasslands,and its estimation is of great significance to grassland resource management and ecological restoration and conservation. With the development of remote sensing technology and the wide application of mechanistic vegetation models,two main methods for estimating grassland biomass have been developed:remote sensing inversion and mechanistic vegetation model estimation. In this paper,the empirical regression method and radiative transfer model in remote sensing inversion as well as the crop and grassland growth models based on vegetation mechanisms are systematically reviewed. Additionally,we introduce data assimilation techniques that have been widely used in the field of agricultural yield estimation,analyze the complementary advantages of remote sensing data and mechanistic models in grassland biomass assimilation estimation,and highlight current problems and future development needs. Aside from simplifying the models,the focus of future research on grassland biomass estimation should include ensuring the stability and accuracy of estimation and taking the vegetation mechanisms into account.

grasslandbiomassremote sensingmechanistic vegetation modelsdata assimilation

王彩玲、王一鸣

展开 >

西安石油大学计算机学院,陕西西安 710000

草地 生物量 遥感 植被机理模型 数据同化

国家自然科学基金项目国家自然科学基金项目陕西省重点研发计划项目

31160475614014392023-YBSF-437

2024

草业科学
中国草原学会 兰州大学草地农业科技学院

草业科学

CSTPCD北大核心
影响因子:0.854
ISSN:1001-0629
年,卷(期):2024.41(9)