首页|基于GEE的香格里拉草地分类及其生物量遥感估算

基于GEE的香格里拉草地分类及其生物量遥感估算

扫码查看
草地类型划分及其生物量估测对于草地管理与保护具有重要意义。香格里拉草地资源丰富,类型多样,属同纬度高海拔草地的典型代表。为了提升高原复杂地形下草地资源信息的质量,以香格里拉市为研究区,基于谷歌地球引擎(GEE)云平台和Sentinel-2遥感影像,结合光谱、植被指数、纹理和地形特征构建了 33个原始特征,并使用递归特征消除(RFE)和特征重要性得分进行特征优化,采用随机森林(RF)、支持向量机(SVM)、分类回归树(CART)和梯度提升决策树(GBDT)4种算法对研究区草地进行提取与分类,最后基于地面样地数据对地上生物量(AGB)进行反演。结果表明:1)RFE算法将特征数压缩到了 21个,且海拔特征对草地类型的划分具有最高的重要性。2)RF算法的分类精度最高,总体精度(OA)为91。41%,Kappa系数为88。18%。3)香格里拉草地可分为5种类型,草地总面积为3 265。77 km2,面积最大的类型为亚高山草甸,其面积为2230。03 km2,占草地总面积的68。28%;其次为高寒草甸,约占草地总面积的18。42%。4)建立了地上生物量与差异植被指数(DVI)的二次多项式预测模型,R2为0。783,均方根误差(RMSE)为154。72g·m-2。5)香格里拉草地总AGB为152。15万t,亚高山草甸AGB为102。41万t,占总AGB的67。31%;其次高寒草甸为27。37万t,占总AGB的17。99%。本研究利用遥感技术与机器学习,成功实现了香格里拉地区草地类型的划分及其生物量的估算。这些成果不仅为高原草地的管理和保护提供了科学依据,还为类似生态系统的研究提供了有效的方法论。
Classification of Shangri-La grasslands based on Google Earth Engine and remote sensing estimation of their biomass
The division of grassland types and the estimation of their biomass are of great importance for grassland management and conservation.The Shangri-La grasslands are rich in resources,diverse in types,and represent a typical example of high-altitude grasslands found at similar latitudes.To enhance the quality of grassland resource information in complex highland terrain,Shangri-La City was selected as the study area.Based on the Google Earth Engine cloud platform and Sentinel-2 remote sensing images,33 original features were constructed combining spectral,vegetation index,texture,and terrain characteristics.Feature optimization was performed using recursive feature elimination and feature importance scores.Four algorithms:Random forest,support vector machine,classification and regression tree,and gradient boosting decision tree were employed to extract and classify the grasslands in the study area.Finally,the aboveground biomass(AGB)was inverted based on ground plot data.The RFE algorithm compressed the number of features to 21,and the altitude feature had the highest importance in the classification of grassland types.The RF algorithm had the highest classification accuracy,with an overall accuracy of 91.41%and a Kappa coefficient of 88.18%.Shangri-La grasslands can be divided into five types,with a total area of 3 265.77 km2.The largest type was the subalpine meadow,covering an area of 2 230.03 km2,accounting for 68.28%of the total grassland area,followed by alpine meadows,accounting for approximately 18.42%of the total grassland area.A quadratic polynomial model predicting aboveground biomass with the difference vegetation index was established,with an R2 of 0.783 and a root mean square error of 154.72 g·m-2.The total AGB of the Shangri-La grasslands was estimated at 1.521 5 million tons,with subalpine meadows contributing 1.0241 million tons,accounting for 67.31%of the total AGB,followed by alpine meadows with 273 700 tons,accounting for 17.99%of the total AGB.This study successfully employed remote sensing technology and machine learning to classify grassland types and estimate biomass in the Shangri-La region.These findings not only provide a scientific basis for the management and conservation of plateau grasslands but also offer effective methodologies for research on similar ecosystems.

grassland classificationaboveground biomassmachine learningremote sensing estimationrandom forestGoogle Earth Enginenorthwest Yunnan

徐祖平、舒朗朗、吴文桂、王子芝、程鑫萌、廖声熙

展开 >

中国林业科学研究院高原林业研究所,云南 昆明 650216

南京林业大学林学院,江苏南京 210037

国家林业和草原局香格里拉草地生态系统国家定位观测研究站,云南香格里拉 674400

草地分类 地上生物量 机器学习 遥感估算 随机森林 谷歌地球引擎 滇西北

云南牧草新品种选育研究及示范推广项目亚高山草地优势植物性状及其生产力形成机制项目

202302AE090008CAFYBB2022SY039

2024

草业科学
中国草原学会 兰州大学草地农业科技学院

草业科学

CSTPCD北大核心
影响因子:0.854
ISSN:1001-0629
年,卷(期):2024.41(10)