首页|基于SNV和MSC结合遗传算法对羊肉葡萄糖含量可见-近红外光谱建模的效果

基于SNV和MSC结合遗传算法对羊肉葡萄糖含量可见-近红外光谱建模的效果

扫码查看
为提高羊肉中营养成分可见-近红外光谱预测模型的稳定性和准确性,本研究以葡萄糖(GLU)指标为例,采用遗传算法(GA)提取特征波长后,结合标准正态变换(SNV)和多元散射校正(MSC)两种预处理方式进行偏最小二乘法建立预测模型,对比SNV、MSC预处理直接进行偏最小二乘的建模效果。结果显示:在标准正态变换下遗传偏最小二乘模型(GA-SNV-PLS)优于直接在标准正态变换下偏最小二乘模型(FS-SNV-PLS);经交叉验证后,该模型的均方根误差(RMSE)为0。122,决定系数(R2)为0。930,相对分析误差(RPD)为2。295;相较于全光谱偏最小二乘模型(FS-PLS)、全波段多元散射校正FS-MSC-PLS和多元散射下GA-MSC-PLS,其R2和RPD分别提高了 95。80%、50。21%、85。05%和62。65%、37。08%、52。54%。结果表明,由SNV结合遗传算法建立的偏最小二乘模型能够提高模型的预测能力。
Modeling effect of visible-near infrared spectrum on mutton glucose content based on SNV and MSC combined with genetic algorithm
To improve the stability and prediction ability of the visible-near infrared spectral model for mutton nutrients,taking glucose(GLU)as an example,the characteristic wavelength was extracted by genetic algorithm(GA)and a prediction model was established.Two preprocessing methods,standard normal transformation(SNV)and multivariate scattering correction(MSC),were used to directly model the partial least squares regression and the results were compared.Genetic partial least squares model under SNV(GA-SNV-PLS)was better than the direct partial least squares model under SNV(FS-SNV-PLS).After cross-validation,the root mean square error(RMSE)of the model was 0.122,determinant coefficient R was 0.930,and relative analysis error(RPD)was 2.295.Compared with the full spectrum,the R2 and RPD for MSC and genetic partial least square model under MSC increased by 95.80%,50.21%,85.05%;62.65%,37.08%,and 52.54%,respectively.

near infrared spectrumfresh muttonglucosestandard normal transformationmultivariate scattering correctiongenetic algorithm

尹成诚、康景、刘建新、年芳、唐德富

展开 >

甘肃农业大学理学院,甘肃兰州 730070

近红外光谱 羊肉 葡萄糖 标准正态变换 多元散射校正 遗传算法

国家自然科学基金项目

31860655

2024

草业科学
中国草原学会 兰州大学草地农业科技学院

草业科学

CSTPCD北大核心
影响因子:0.854
ISSN:1001-0629
年,卷(期):2024.41(10)