首页|高速公路机电设备健康状态物联监测与智能诊断

高速公路机电设备健康状态物联监测与智能诊断

扫码查看
针对高速公路机电设备运维管理存在健康状态数据不能实时获取、故障发现不够及时准确、设备维护处理效率较低等问题,本文提出应用物联网和智能诊断模型处理技术,构建一种远程机电设备健康状态物联监测与智能诊断系统。该系统通过实时监测设备基础状态数据,利用物联网技术将数据传输到云处理平台,对数据进行分析、处理、判断机电设备运行的健康状态及故障智能诊断。实际运行结果表明:该系统可准确地判断外场机电设备的健康状态,减少现场维护频次约 15%,缩短运维和巡检车辆行驶里程约 30%,实现了节能减排,降低了运维成本,缓解了高速公路拥堵,进而取得良好的经济和社会效益。
IoT Monitoring and Intelligent Diagnosis System for the Health Status of Mechanical and Electrical Equipment on Highway
In response to the problems of real-time acquisition of health status data,insufficient timely and accurate fault detection,and low efficiency of equipment maintenance and processing in the operation and maintenance management of mechanical and electrical equipment on highways,a remote monitoring and intelligent diagnosis system for the health status of mechanical and electrical equipment using the Internet of Things and intelligent diagnosis model processing technology is proposed.The system uses real-time monitoring of equipment basic status data and Internet of Things technology to transmit the data to the cloud processing platform,achieving analysis,processing,judgment of the health status of mechanical and electrical equipment operation,and intelligent fault diagnosis.The actual operation results show that the system can accurately determine the health status of outdoor mechanical and electrical equipment,reduce the frequency of on-site maintenance by about 15%,and reduce the mileage of operation and inspection vehicles by about 30%,achieving energy conservation and emission reduction,reducing operation and maintenance costs,and reducing highway congestion.Therefore good economic and social benefits have been achieved.

Internet of Thingsmechanical and electrical equipmenthealth statusfault tree analysisintelligent diagnosis

雷汉伟

展开 >

福建省高速公路集团有限公司泉州管理分公司,福建 泉州 362000

物联网 机电设备 健康状态 故障树 智能诊断

2024

交通节能与环保
人民交通出版社股份有限公司,交通运输部公路科学研究院

交通节能与环保

影响因子:0.286
ISSN:1673-6478
年,卷(期):2024.20(1)
  • 11