首页|基于卷积神经网络的多类别路面病害自动识别研究

基于卷积神经网络的多类别路面病害自动识别研究

扫码查看
近年来,卷积神经网络因其人工神经元能够对覆盖范围内相邻单元的部分进行响应,对于大型图像处理具有出色表现,正广泛应用于图像智能识别领域。本文针对实际道路中检测到的路面病害图片,应用轻量化的卷积神经网络模型中的YOLOX-MobileNetV3模型进行智能识别,结果表明:轻量化网络模型在样本数量不多时识别平均精度较低,病害全类平均精度在某类病害数量达到5000处时平均精度有较大提升。
Research on Automatic Recognition of Multi-class Pavement Disease Based on Convolutional Neural Network
In recent years,convolutional neural networks have been widely used in the field of image recognition because their artificial neurons can respond to a part of the coverage of the surrounding units,which has excellent performance in large-scale image processing. In this paper,the YOLOX-MobileNetV3 model in the lightweight convolutional neural network model is applied for intelligent recognition of the pavement disease images detected on actual roads. The results show that the average accuracy of the lightweight network model is low when the number of samples is small,and the average accuracy of the whole class of diseases is greatly improved when the number of diseases in a certain class reaches 5000.

highway maintenanceimage recognitionYOLOX-MobileNetV3 modelaverage accuracy

肖海文、蓝嵩、何国伟、温晓华、仰圣刚

展开 >

梅州市梅江公路事务中心,广东 梅州 514000

华东交通大学交通运输工程学院,江西 南昌 330013

公路养护 图像识别 YOLOX-MobileNetV3模型 平均精确度

2024

交通节能与环保
人民交通出版社股份有限公司,交通运输部公路科学研究院

交通节能与环保

影响因子:0.286
ISSN:1673-6478
年,卷(期):2024.20(5)