首页|基于YOLOX-tf2-EffcientNet轻量级模型的路面病害识别的研究

基于YOLOX-tf2-EffcientNet轻量级模型的路面病害识别的研究

扫码查看
为了提高三维探地雷达图像的利用效率,本研究提出了YOLOX-tf2-EffcientNet网络框架,运用图像分析和数据增强技术创建三维探地雷达内部缺陷数据组,充分发挥 GPU 高度集成的计算能力,将数据集输入YOLOX-tf2-EffcientNet网络架构.在测试中,该模型的平均检测精确度为 75.59%,满足了工程上的准确性要求.在数据集测试方面,此方法能够有效监测道路中各种缺陷的存在,并能够准确定位这些缺陷.
Research on Road Disease Identification Based on YOLOX-tf2-EffcientNet Lightweight Model
In order to enhance the efficiency of utilizing three-dimensional ground-penetrating radar(GPR)images,this study proposes the YOLOX-tf2-EfficientNet network framework.Utilizing image analysis and data augmentation techniques,an internal defect dataset for three-dimensional GPR is created.The high-integration computing capability of GPU is fully leveraged to input this dataset into the YOLOX-tf2-EfficientNet network architecture.During testing,the model achieves an average detection accuracy of 75.59%,meeting the accuracy requirements in engineering applications.In terms of dataset testing,this approach effectively detects various issues within the road and accurately locates them.

three-dimensional ground-penetrating radarinternal defectsYOLOXneural networkEfficientNet

丁友清、蒋煜、郭彧、张礼超

展开 >

江西省交通设计研究院有限责任公司,江西 南昌 330200

华东交通大学交通运输工程学院,江西 南昌 330013

三维探地雷达 内部缺陷 YOLOX 神经网络 EffcientNet

2024

交通节能与环保
人民交通出版社股份有限公司,交通运输部公路科学研究院

交通节能与环保

影响因子:0.286
ISSN:1673-6478
年,卷(期):2024.20(6)