首页|基于YOLOX-ShuffleNetV2模型的路面病害智能识别研究

基于YOLOX-ShuffleNetV2模型的路面病害智能识别研究

扫码查看
为进一步快速便捷处理多功能路况快速拍照检测系统获取的病害图像,将YOLOX-shuffleNetV2 神经网络模型引入到基于图像分析的路面病害智能识别中.首先,在 12 500张有病害的图像中选取 8 000张作为训练集,选取 2 500张图像为验证集,其余 2 000张为测试集,对所有图像进行2 轮训练、验证和测试,并利用平均精确度、全类平均精确度、精确度、召回率、F1 值、平均漏检率等指标来评价 2 轮训练和测试的结果.结果表明:该模型在识别车辙和修补裂缝具有比较显著的效果,在识别龟裂和坑槽病害效果较差.由此可见,YOLOX-shuffleNetV2 神经网络模型可以用于路面病害智能识别,但是需要提高样本量以提高平均精确度.
Research on Intelligent Identification of Pavement Diseases Based on YOLOX ShuffleNetV2 Model
In order to further quickly and conveniently process the disease images obtained by the multifunctional road condition rapid photo detection system,the YOLOX-ShuffleNetV2 neural network model is introduced into the intelligent identification of pavement diseases based on image analysis.Firstly,8 000 of the 12 500 diseased images were selected as the training set,the remaining 2 500 images were the verification set,and the remaining 2 000 images were the test set,and all images were trained,verified and tested for 2 rounds,and the results of the 2 rounds of training and testing were evaluated by using the average accuracy,the average accuracy of the whole class,the precision,the recall rate,the F1 value,and the average missed detection rate.The results show that this model has a significant effect in identifying ruts and repairing cracks,but has a poor effect on identifying cracks and pit diseases.It can be seen that the YOLOX-shuffleNetV2 neural network model can be used for intelligent identification of pavement diseases,but it is necessary to increase the sample size and improve the average accuracy.

road detectionYOLOX-ShuffleNetV2 modelaverage accuracy

马泽欣、肖林朵、谢吉林、张关发

展开 >

江西省交通设计研究院有限责任公司,江西 南昌 330200

华东交通大学交通运输工程学院,江西 南昌 330013

道路检测 YOLOX-tf2-shuffleNetV2模型 平均精确度

2024

交通节能与环保
人民交通出版社股份有限公司,交通运输部公路科学研究院

交通节能与环保

影响因子:0.286
ISSN:1673-6478
年,卷(期):2024.20(6)