首页|湍流场高分辨重构的时程深度学习方法

湍流场高分辨重构的时程深度学习方法

扫码查看
湍流的研究离不开高分辨率的流场数据,但受测量方法、计算效率和数据存储等多方面限制,高分辨率湍流数据的直接获取仍比较困难.本文基于流场时程数据的低维表征模型,提出基于神经网络的特征编码预测模型与高分辨率的湍流重构方法.首先,基于一维卷积方法建立湍流时程的低维表征模型;然后,基于人工神经网络模型建立测点坐标与特征编码之间的映射关系,实现未知测点的特征编码预测;最后,利用所预测的特征编码结合表征模型的解码器生成求解域内任意位置处的湍流时程.对Re=2.2×104的方柱湍流场进行低维表征,进而实现高分辨率流场时程数据的重构,并验证方法的准确性.本文所提方法是一种在时间维度上具有高精度的湍流重构方法,且是一种无监督训练方法,可广泛应用于基于一点的传感器数据处理,是一种适用于湍流流场时程数据重构的新方法.
High resolution turbulence flow reconstruction using flow time history deep learning
High-resolution time variant flow field data is the key to the study of turbulence flow.Limited by measurement methods,simulation efficiency and data storage,it is still difficult to obtain high-resolution tur-bulent flow data directly in some circumstances.In this paper,based on the low-dimensional representation model of flow time-history data,a neural network-based feature coding prediction model and high-resolution turbulence flow reconstruction method were proposed.Firstly,a low-dimensional representation model of the turbulence flow was established based on the one-dimensional convolution networks;then,an artificial neu-ral network model was employed to establish the mapping between the measuring point coordinates and fea-ture coding system,and the prediction of feature coding for the unknown measuring points was realized;final-ly,based on feature coding,the decoder in the representation model was utilized to generate turbulence flow time history data at unknown positions.Turbulence flow with Re=2.2×104 around a square cylinder was stud-ied,and the low dimensional representation model and flow generation model were trained and verified.The method proposed in this paper is a high-precision turbulence flow data reconstruction method which can be widely used in one-point-based sensor data processing.It is a new approach for the reconstruction of turbu-lence flow field time-history data.

turbulence flow reconstructionturbulence flow time historydeep learningfeature extractionunsupervised model

战庆亮、白春锦、葛耀君

展开 >

大连海事大学交通运输工程学院,辽宁 大连 116026

同济大学桥梁结构抗风技术交通行业重点实验室,上海 200092

湍流重构 湍流流场时程 深度学习 特征提取 无监督模型

2025

船舶力学
中国船舶科学研究中心 中国造船工程学会

船舶力学

北大核心
影响因子:0.437
ISSN:1007-7294
年,卷(期):2025.29(1)