首页|深水钻井隔水管下放作业可靠性智能评估方法

深水钻井隔水管下放作业可靠性智能评估方法

扫码查看
隔水管下放是深水钻井的重要步骤,此过程中卡盘承担隔水管系统全部重量,加之复杂多变的深水环境,导致下放作业风险较大.为了确保隔水管下放作业安全,本文针对隔水管连续下放工况,构建环境载荷参数联合分布模型,确定基于IAGA-BRNN的结构响应智能预测模型,结合蒙特卡洛方法形成隔水管下放作业可靠性评估方法并开展应用实例研究.结果表明:环境载荷参数联合分布模型中大部分参数符合Weibull分布和Beta分布;提出的预测模型在所有指标上均保持较好的水平,且较常规预测模型最多提高了76.77%;隔水管等效应力和最大轴向力是影响下放作业安全的首要和次要限制因素,且随着悬挂隔水管根数增加,结构可靠度呈下降趋势,将波高作为限制条件可有效提高作业可靠性.
Intelligent assessment method of reliability for deepwater riser deployment
Riser deployment is an important step in deepwater drilling,during which the spider is the prima-ry support of the riser system.At the same time,the harsh deepwater environment leads to a high risk of riser deployment.To ensure the safety of riser deployment,firstly,a joint distribution model of environmental pa-rameters was constructed.Then,an intelligent prediction model of structural response based on IAGA-BRNN was determined.Finally,the method of structure reliability assessment for riser deployment was estab-lished combining Monte Carlo,and a case study was carried out.Results show that most parameters in the joint distribution model of environment obey Weibull distribution and Beta distribution.The prediction model proposed in this paper performs well in all the prediction indicators,and has a stronger prediction ability com-pared with the conventional prediction model.The equivalent stress and maximum axial force are the first and secondary limitation factors of the riser deployment.In addition,as the number of hang-off riser increas-es,the reliability is on the decline,and wave height is the main limiting factor of operational reliability.

riser deploymentreliabilityMonte Carloneural networkgenetic algorithm

朱高庚、陈国明、刘康

展开 >

中国石油大学(华东)海洋油气装备与安全技术研究中心,山东 青岛 266580

隔水管下放 可靠性 蒙特卡洛 神经网络 遗传算法

2025

船舶力学
中国船舶科学研究中心 中国造船工程学会

船舶力学

北大核心
影响因子:0.437
ISSN:1007-7294
年,卷(期):2025.29(1)