首页|基于卷积神经网络的图像分割方法研究

基于卷积神经网络的图像分割方法研究

扫码查看
针对传统卷积神经网络存在的参数多、过度拟合导致图像分割精度不高、算法运行效率低的问题,采用最大池化处理取代下采样层,构建改进的CNN结构,获得U-Net卷积神经网络,并进行进一步改进.将改进的U-Net卷积神经网络应用于高分辨率的遥感图像中,结果表明其可以对遥感图像中的小建筑物进行精细、完整分割.另外,通过和FCN32s、SegNet、FCN8s的对比,指出改进的U-Net卷积神经网络在遥感图像分割中具有更加良好的性能.
Research on Image Segmentation Methods Based on Convolutional Neural Networks
Aiming at the problems of multiple parameters,overfitting leading to low image segmentation ac-curacy and low algorithm efficiency in traditional convolutional neural networks,maximum pooling pro-cessing is adopted to replace the downsampling layer,and an improved CNN structure is constructed to ob-tain the U-Net convolutional neural network,which is further improved.The improved U-Net convolution-al neural network is applied to high-resolution remote sensing images,and the results show that it can per-form fine and complete segmentation of small buildings in remote sensing images.In addition,by compa-ring with FCN32s,SegNet,and FCN8s,it is pointed out that the improved U-Net convolutional neural net-work has better performance in remote sensing image segmentation.

convolutional neural networkimage segmentationremote sensing image

戚伟、葛斌、桑冬青

展开 >

淮南职业技术学院 智能与电气工程学院,安徽 淮南,232001

安徽理工大学 计算机科学与工程学院,安徽 淮南,232001

卷积神经网络 图像分割 遥感图像

安徽省高等学校自然科学研究重点项目

KJ2020A1163

2024

长春工程学院学报(自然科学版)
长春工程学院

长春工程学院学报(自然科学版)

影响因子:0.328
ISSN:1009-8984
年,卷(期):2024.25(1)
  • 11