首页|基于纹理增强和细化的可见光图像互信息边缘提取研究

基于纹理增强和细化的可见光图像互信息边缘提取研究

扫码查看
采用传统方法提取图像边缘时,会产生图像互信息匹配不准确、F1值低、边缘检测性能不理想等问题.基于此,提出基于纹理增强和细化的可见光图像互信息边缘提取的方法:利用互信息配准公式对图像进行配准,并在此基础上对图像进行预处理,处理步骤包括图像纹理增强、图像二值化、图像平滑及细化,最终得到无干扰的清晰数据,再利用二维光滑化函数和Lipschitz方法对优化后的图像进行边缘检测和提取.试验结果表明,所提方法的F1值始终>0.85,在3组试验数据集中的真正例率>95%,且假正比例<20%.试验所得数据说明所提方法具有更好的应用性能.
Research on Mutual Information Edge Extraction of Visible Image Based on Texture Enhancement and Refinement
When using traditional methods to extract image edges,problems such as inaccurate image mutual information matching,low F1 value,and unsatisfactory edge detection performance may arise.A visible im-age mutual information edge extraction based on texture enhancement and refinement is proposed.The im-age is registered using mutual information registration formulas and the image is preprocessed on this ba-sis.The processing steps include image texture enhancement,image binarization,image smoothing and re-finement,and finally obtain clear data without interference.Then the two-dimensional smoothing function and Lipschitz method are used to perform edges detection and extraction on the the optimized image.The experimental results show that the F1 value of the proposed method is always higher than 0.85,with a true case rate is more than 95% and less than 20% in the three groups of experimental datasets.The experi-mental data indicates that the proposed method has better application performance.

mutual informationimage registrationedge detectionedge extraction

何灏、张海民

展开 >

安徽信息工程学院计算机与软件工程学院,安徽芜湖 241000

互信息 图像配准 边缘检测 边缘提取

安徽高校自然科学重点研究项目

2022AH051889

2024

长春工程学院学报(自然科学版)
长春工程学院

长春工程学院学报(自然科学版)

影响因子:0.328
ISSN:1009-8984
年,卷(期):2024.25(2)
  • 14