首页|基于IPSO-Att-TCN的航空发动机寿命预测方法

基于IPSO-Att-TCN的航空发动机寿命预测方法

扫码查看
为提高航空发动机剩余使用寿命的预测精度,提出了一种基于改进粒子群算法(IPSO)优化注意力时间卷积网络(Att-TCN)的剩余使用寿命(RUL)预测方法(IPSO-Att-TCN).首先,使用注意力机制对各变量特征进行权重分配.其次,使用改进的粒子群算法对注意力时间卷积网络进行超参数优化,利用非线性惯性权重来提升算法的全局寻优的能力.最后,以C-MAPSS的真实剩余使用寿命为参照,将IPSO-Att-TCN与BP、LSTM以及GRU的剩余使用寿命预测结果进行比较,结果表明所提出的模型能有效提高RUL预测精度.
Aeroengine Life Prediction Method Based on IPSO-Att-TCN
In order to improve the prediction accuracy of the remaining useful life of aeroengine,a Remaining Useful Life(RUL) prediction method based on Improved Particle Swarm Optimization(IPSO) optimized Attention Time Convolutional Network(IPSO-Att-TCN) is proposed.Firstly,the attention mechanism is used to assign weights to the features of each variable.Secondly,the improved particle swarm optimization algorithm is used to optimize the hyperparameters of the attention time convolutional network,and the nonlinear inertia weights are used to improve the global optimization ability of the algorithm.Finally,using the actual remaining service life of C-MAPSS as a reference,the remaining service life prediction results of IPSO-Att-TCN are compared with those of BP,LSTM and GRU.The results show that the proposed mod-el can effectively improve the accuracy of RUL prediction.

particle swarm optimizationtemporal convolutional networkremaining useful lifeattention mechanismhyperparameter optimization

王善求、李春梅、谷佳澄、谭佳伟

展开 >

长春工业大学数学与统计学院,长春 130012

粒子群算法 时间卷积网络 寿命预测 注意力机制 超参数优化

吉林省科技厅重点研发项目

20230204078YY

2024

长春工程学院学报(自然科学版)
长春工程学院

长春工程学院学报(自然科学版)

影响因子:0.328
ISSN:1009-8984
年,卷(期):2024.25(3)