首页|基于数据挖掘的智能驾驶小目标检测研究

基于数据挖掘的智能驾驶小目标检测研究

扫码查看
小目标检测是智能驾驶安全领域的重要研究内容,其中交通标志的检测是智能驾驶环境感知的关键环节,但由于交通标志的判定属于远距离识别且目标较小,因此往往会出现漏检或识别精度低的问题.基于Faster R-CNN算法将骨干网络VGG16替换为ResNet50,将混合注意力机制融入主干残差结构,利用多尺度滑动窗口改进RPN网络,在不同深度卷积层生成特征图并进行特征融合.改进后的算法使检测精度mAP从85.99%变为94.38%,有效地提高了智能驾驶场景下识别交通标志小目标的能力.
Research on Small Object Detection in Intelligent Driving Based on Data Mining
Small object detection is an important research topic in the field of intelligent driving safety,espe-cially in the detection of traffic signs,which is a key link in the perception of intelligent driving environ-ments.However,due to the long-distance recognition of traffic signs and the small size of the target,prob-lems such as missed detection or low recognition accuracy often occur.Based on the Faster R-CNN algo-rithm,the backbone network VGG16 is replaced with ResNet50,a hybrid attention mechanism is integrated into the backbone residual structure,and a muti-scale sliding windows is used to improve the RPN net-work.Feature maps are generated and fused at different depth convolution layers.The improved algorithm has increased the detection accuracy mAP from 85.99% to 94.38%,effectively improving the ability to recognize small targets of traffic signs in intelligent driving scenarios.

traffic signsmall targetFaster R-CNN

王嘉月

展开 >

沈阳大学,沈阳 110003

交通标志 小目标 Faster R-CNN

2023年度沈阳大学研究生教育教学改革项目

23034801

2024

长春工程学院学报(自然科学版)
长春工程学院

长春工程学院学报(自然科学版)

影响因子:0.328
ISSN:1009-8984
年,卷(期):2024.25(3)