首页|基于HOG-LBP的金属表面缺陷识别方法研究

基于HOG-LBP的金属表面缺陷识别方法研究

扫码查看
金属表面缺陷复杂、多样,高效、高精度的表面缺陷识别方法是提升金属制品生产效率的关键所在.构建了基于HOG-LBP的金属表面缺陷识别模型,该模型采用中值滤波法对金属表面缺陷图像进行降噪处理,运用梯度直方图与局部二值模式提取表面缺陷图像特征,并通过不同分类器来融合决策,达到识别金属表面缺陷的目的.将提出的方法应用于发动机凸轮轴表面缺陷的识别中,能够有效地对凸轮轴表面的污渍、划痕和凹坑缺陷进行识别.通过和其他学者方法的对比,验证了所提出的金属表面缺陷识别方法具有更高的识别准确率和识别效率,能够有效地应用于不同类型的表面缺陷识别.
Research on Metal Surface Defect Identification Method Based on HOG-LBP
Metal surface defects are complex and diverse.Efficient and high-precision surface defect identifi-cation method is the key to improve the production efficiency of metal products.A metal surface defect rec-ognition model based on HOG-LBP is constructed.The model uses median filtering to denoise metal sur-face defect images,uses gradient histogram and local binary mode to extract the surface defect image fea-tures,and uses different classifiers to make fusion decisions to achieve the goal of identifying metal surface defects.The proposed method is applied to the surface defect identification of engine camshaft,which can effectively identify the stains,scratches and dents on the camshaft surface.By comparing with other scholars'methods,it is verified that the proposed metal surface defect identification method has higher ac-curacy and efficiency,and can be effectively applied to different types of surface defect recognition.

deep learningmetal surface defectimage feature extractionclassifier

吕霁、赵艳平、王凯

展开 >

黎明职业大学,福建 泉州 362000

安徽水利水电职业技术学院,合肥 230001

安徽理工大学,安徽 淮南 232001

深度学习 金属表面缺陷 图像特征提取 分类器

2024

长春工程学院学报(自然科学版)
长春工程学院

长春工程学院学报(自然科学版)

影响因子:0.328
ISSN:1009-8984
年,卷(期):2024.25(4)