首页|基于改进YOLOv5的人体结核菌素试验后皮下硬块检测算法研究

基于改进YOLOv5的人体结核菌素试验后皮下硬块检测算法研究

扫码查看
针对传统皮下硬块检测方法精度低、计算速度慢等问题,提出了一种基于改进YOLOv5的皮下硬块目标检测算法.首先,将YOLOv5模型的主干网络CSPDarknet53进行改进,引入Faster模块来替换其中的C3模块.其次,利用模型剪枝在保证整个模型性能的同时减轻其计算复杂度.最后,引入Wise-IoU来进一步提升网络的回归性能.实验结果表明,基于改进YOLOv5的皮下硬块目标检测算法相比于原始的YOLOv5,准确率提升了1.2%,参数量减少了77.7%,整个算法更加轻量化,有效提高了算法对于皮下硬块的检测精度,减少了计算参数量,提升了算法的运行速度.
Research on Human Subcutaneous Hard Lump Detection Algorithm Based on Improved YOLOv5
Aiming at the problems of low accuracy and slow computation speed of traditional subcutaneous hard lump detec-tion methods ,a subcutaneous hard lump target detection algorithm based on improved YOLOv5 is proposed. First ,the backbone network CSPDarknet53 of the YOLOv5 model is improved by introducing the Faster module to replace the C3 module. Second ,model pruning is utilized to mitigate the computational complexity of the whole model while ensuring its performance. Finally ,Wise-IoU is introduced to improve the regression performance of the network further. The experi-mental results show that the subcutaneous hard lump target detection algorithm based on the improved YOLOv5 improves the accuracy by 1.2% and reduces the number of parameters by 77.7% compared to the original YOLOv5. The whole algorithm is more lightweight ,effectively improving the algorithm's accuracy for detecting subcutaneous hard lumps ,reducing the number of computational parameters ,and enhancing the algorithm's running speed.

object detectionsubcutaneous hard lumptuberculin skin testdeep learningYOLOv5

张兴、周婷钰、杨光欢、徐安成、冯彬

展开 >

江苏省常州市疾病预防控制中心 慢性传染病防治科,常州 213003

常州工学院 光电工程学院,常州 213032

南京医科大学 公共卫生学院,南京 211166

目标检测 皮下硬块 结核菌素皮肤试验 深度学习 YOLOv5

常州市科技计划

CE20215019

2024

长春理工大学学报(自然科学版)
长春理工大学

长春理工大学学报(自然科学版)

CSTPCD
影响因子:0.432
ISSN:1672-9870
年,卷(期):2024.47(2)
  • 16