首页|基于多尺度融合的轻量级脑肿瘤分割算法

基于多尺度融合的轻量级脑肿瘤分割算法

扫码查看
脑肿瘤是一种常见的神经系统疾病,准确的肿瘤分割对于诊断和治疗至关重要.然而,传统的自动分割方法受限于计算复杂度和精度,限制了其实际的临床应用.此外,脑肿瘤在不同尺度下具有多样性,因此需要一种方法来融合多尺度信息以提高分割精度.首先设计一种轻量级脑肿瘤分割模型,通过减小参数量和计算复杂度,使其更适合点对点临床分析;其次,引入了多尺度信息融合策略和注意力机制,以考虑不同尺度下的脑肿瘤特征,提高分割准确度和鲁棒性;最后,实验优化后的模型完整肿瘤、核心区域、增强区域的Dice分数分别为0.851、0.834、0.778,参数量和计算复杂度仅为0.73 M和0.20 G,优于最先进的分割方法.
Lightweight Brain Tumor Segmentation Based on Multi-Scale Fusion
Brain tumors are a common neurological disorder,and accurate tumor segmentation is crucial for diagnosis and treatment. However,traditional automatic segmentation methods are limited by computational complexity and accuracy,restricting their practical clinical applications. Additionally,brain tumors exhibit diversity at different scales,requiring an approach to fuse multi-scale information to improve segmentation accuracy. To address these challenges,this paper first introduces a lightweight brain tumor segmentation model. It achieves a reduction in parameter count and computational complexity,making it well-suited for point-to-point clinical analysis. Secondly,multi-scale information fusion strategies and attention mechanisms are incorporated to consider brain tumor features at various scales,enhancing segmentation preci-sion and robustness. Finally,the experimentall optimized model achieves Dice scores of 0.851,0.834,and 0.778 for whole tumor,core region,and enhancing region,with a parameter count of only 0.73 M and 0.20 G FLOPs,outperforming state-of-the-art segmentation methods.

brain tumorsautomatic segmentationlightweight modelmulti-scale information fusion

钱东宝、庞春颖、李晶怡

展开 >

长春理工大学 生命科学技术学院,长春 130022

脑肿瘤 自动分割 轻量级模型 多尺度信息融合

吉林省科技厅项目

20220204127YY

2024

长春理工大学学报(自然科学版)
长春理工大学

长春理工大学学报(自然科学版)

CSTPCD
影响因子:0.432
ISSN:1672-9870
年,卷(期):2024.47(3)
  • 4