首页|多传感器数据融合高度测量系统研制及应用

多传感器数据融合高度测量系统研制及应用

扫码查看
针对无人机载污染物测量平台在空中测量大气污染物垂直分布时难以准确标定实时高度的问题,通过分析现行不同无人机高度测量方法的误差特性,提出了一种利用卡尔曼滤波算法对传感器数据进行融合的测量方法,通过对GPS、气压计和加速度传感器所测量的高度数据进行融合,进而提高系统的测量精度和鲁棒性.经过实际测试,使用该方法融合计算后的高度数据误差控制在0.3 m范围内,优于现有其他测量方法的结果.不同气象环境下的测量对比结果显示,该系统具有测量数据精确、抗气象干扰能力强等优点,能够满足污染物航测无人机实时定高的需求.
Development and Application of a Multi-sensor Fusion Height Measurement System
In order to address the problem of accurately calibrating the real-time altitude of unmanned aerial vehicle (UAV) pollution measurement platforms when measuring the vertical distribution of atmospheric pollutants in the air,this paper analyzes the error characteristics of different current UAV altitude measurement methods and proposes a measurement method that uses the Kalman filtering algorithm to fuse sensor data. By fusing the height data measured by GPS,barom-eter,and accelerometer sensors,the measurement accuracy and robustness of the system are improved. After actual testing,the use of this method to fuse calculated height data resulted in an error control within a range of 0.3m,which is better than the results of other existing measurement methods. Comparison results of measurements in different meteorological en-vironments show that the system has the advantages of accurate measurement data and strong resistance to meteorological interference,which can meet the real-time altitude requirements of pollution UAVs.

unmanned aerial vehiclekalman filteringdata fusionheight measuremnt

张建国、周家成、杜万里、崔卫华、赵卫雄

展开 >

安徽建筑大学 电子与信息工程学院,合肥 230022

中国科学院安徽光学精密机械研究所,合肥 230031

无人机 卡尔曼滤波 数据融合 高度测量

国家自然科学基金国家自然科学基金国家自然科学基金中国科学院青年创新促进会项目

42022051U21A202842305124Y202089

2024

长春理工大学学报(自然科学版)
长春理工大学

长春理工大学学报(自然科学版)

CSTPCD
影响因子:0.432
ISSN:1672-9870
年,卷(期):2024.47(4)