首页|基于双通道并行网络的肺结节良恶性分类

基于双通道并行网络的肺结节良恶性分类

扫码查看
针对传统的肺结节良恶性分类方法中特征提取能力不足,提出一种结合残差网络和Swin-Transformer的双通道并行网络模型,并在特征融合处引入三重注意力机制有效提高肺结节良恶性分类的精度.该网络通过原始肺结节CT图像以及肺结节轮廓图像的辅助来提高分类精度.构建基于三重注意力的特征融合模块以连接两个网络,有利于发掘更多的肺结节图像特征.方法在LIDC-IDRI数据集上进行验证,AUC达到0.9517,准确率达0.9311.实验结果证明ResNet-Swin Transformer的分类精度相比ResNet和Swin Transformer等更高,可以辅助医生提高肺结节诊断率.
Classification of Benign and Malignant Pulmonary Nodules Based on Dual Channel Parallel Network
In view of the lack of feature extraction ability in traditional classification methods for benign and malignant pul-monary nodules,a dual-channel parallel network model combining residual network and Swin-Transformer is proposed,and the accuracy of benign and malignant pulmonary nodules classification is effectively improved by adding a triple attention module. The network improves the classification accuracy with the help of the original CT image and the contour image of pulmonary nodules. Adding triple attention to connect the two networks is beneficial to explore the benign and malignant characteristics of pulmonary nodules. The proposed method was verified on the LIDC-IDRI dataset,and the AUC reached 0.9517,with an accurate rate reached 0.9311. The experimental results show that the classification accuracy of ResNet-Swin Transformer is higher than that of ResNet and Swin Transformer. The diagnostic rate of pulmonary nodules can be improved.

benign and malignant classificationResNetSwin-Transformerattention mechanism

罗益、李唯嘉、王梦瑶、曹秒、李豪杰

展开 >

长春理工大学 生命科学技术学院,长春 130022

良恶性分类 ResNet Swin-Transformer 注意力机制

吉林省科技厅项目

20240401073YY

2024

长春理工大学学报(自然科学版)
长春理工大学

长春理工大学学报(自然科学版)

CSTPCD
影响因子:0.432
ISSN:1672-9870
年,卷(期):2024.47(4)