首页|基于改进BP神经网络PID控制器参数自整定对PCR温控精度影响的研究

基于改进BP神经网络PID控制器参数自整定对PCR温控精度影响的研究

扫码查看
在PCR过程中,温度控制很大程度决定了最后的实验准确性及结果,作为其过程控制中最重要的PID温度控制,它采用比例、积分、微分环节的控制策略,是一种算法简单、可靠性好、控制鲁棒性高的控制器.在PID控制中,如何高效地控制其三个参数对于PID控制的准确性至关重要.传统的PID控制算法动态性能较差;而模糊控制稳态性能较差.为了解决这个问题,本研究通过对传统温控PID算法的三个参数进行优化并利用神经网络进行整定.通过在搭建的实验平台上进行温控检测,达到了国家规定的设计标准,并且实现了0.2℃的温控精度.
Research on the Effect of Parameter Self-Tuning on the Accuracy of PCR Temperature Control Based on Improved BP Neural Network PID Controller
In the PCR process,temperature control largely determines the final experimental accuracy and results.As the most important PID temperature control in process control,it adopts the control strategy of proportion,integral and differen-tial links.PID controller is widely used in industrial control field because of its simple algorithm,good reliability and high control robustness.The proportional link provides a fast response by reflecting the size of the error;The integral link ensures the steady-state accuracy of the system by eliminating the static difference.The differential component can suppress overharmonization and improve the dynamic performance of the system by predicting the variation trend of error.PID controller plays an irreplaceable role in the field of temperature control,so that the deviation between the temperature set value and the actual temperature value can be effectively controlled in an acceptable range,thus ensuring the requirements of temperature stability and accuracy in industrial production.In PID control,how to control the three parameters efficiently is very important for the accuracy of PID control.The traditional PID control algorithm can achieve good steady-state perfor-mance,but poor dynamic performance.Fuzzy control has excellent dynamic performance,but poor steady-state performance.In order to solve this problem,the three parameters of traditional temperature control PID algorithm are optimized and adjusted by neural network.In order to realize the application of low cost miniaturization platform,we successfully deployed the optimized BP neural network algorithm on STM32F407IGT6 single chip microcomputer,and used to self-tune the PID algorithm parameters.Through the temperature control detection on the built experimental platform,we have reached the national design standards and achieved a temperature control accuracy of 0.2℃.

PCRPIDneural networkintelligent algorithm

土昊辉、王哲

展开 >

长春理工大学 生命科学技术学院,长春 130022

PCR PID 神经网络 智能算法

吉林省科技发展计划项目

20220201092GX

2024

长春理工大学学报(自然科学版)
长春理工大学

长春理工大学学报(自然科学版)

CSTPCD
影响因子:0.432
ISSN:1672-9870
年,卷(期):2024.47(5)