首页|基于空间-通道注意力对抗网络的大气湍流退化图像复原方法

基于空间-通道注意力对抗网络的大气湍流退化图像复原方法

扫码查看
大气湍流的随机性和复杂性会影响光线传输时波的空间位置变化,造成远程成像质量的退化,降低设备对图像信息的提取能力.针对大气湍流退化图像问题,提出空间-通道注意力对抗网络复原湍流退化图像,对退化图像中的噪点、几何扭曲及模糊进行逐步消除.应用空间-通道注意力对特征进行提取,捕捉微观局部和宏观全局信息,同时对通道间信息加以结合,实现复原图像在内容上的协调性.最终实验结果表明提出的方法在复原湍流退化图像领域可行性.
Image Restoration of Atmospheric Turbulence Degradation Based on Space-Channel Attention Adversarial Network
The randomness and complexity of atmospheric turbulence affect the spatial positioning of light waves during transmission,leading to image degradation in long-range imaging and reducing the ability of devices to extract image infor-mation.To address the issue of turbulence-degraded images,propose a spatial-channel attention adversarial network(SCA-GAN)for restoring turbulence-degraded images.The network progressively eliminates noise,geometric distortions,and blurring in degraded images.By applying spatial-channel attention,the model extracts features that capture both local fine details and global contextual information,while integrating inter-channel information to achieve content consistency in the restored images.Experimental results demonstrate the feasibility of the proposed method in the field of restoring turbulence-degraded images.

generative adversarial networksattention mechanismatmospheric turbulenceimage restoration

文兴超、尹伟石

展开 >

长春理工大学 数学与统计学院,长春 130022

生成对抗网络 注意力机制 大气湍流 图像复原

2024

长春理工大学学报(自然科学版)
长春理工大学

长春理工大学学报(自然科学版)

CSTPCD
影响因子:0.432
ISSN:1672-9870
年,卷(期):2024.47(6)