首页|基于动态点线耦合的单目视觉惯性SLAM算法

基于动态点线耦合的单目视觉惯性SLAM算法

扫码查看
针对传统视觉SLAM算法在暗纹理环境下鲁棒性差、定位精度低的问题,本文给出了一种基于动态点线耦合的单目视觉惯性SLAM算法.设定提取线特征的动态阈值,提高线特征利用率,然后利用点与线特征位置的相似性,提取新的点线耦合特征,并构造点线耦合残差模型,用点线耦合残差来搜索点与线特征之间的关系,将点线耦合残差集成到后端滑动窗口优化中,用以构造最小化成本函数.将构造的算法在EuRoC公开数据集上进行仿真,实验结果表明,本文设计的算法比VINS-Mono算法和PL-VIO算法的定位误差降幅明显,有效地增强了系统的鲁棒性,提高了系统的定位精度.
Monocular Visual Inertial SLAM Algorithm Based on Dynamic Fusion of Point-line Features
For the problems of poor robustness and low localization accuracy of traditional visual SLAM(Simultaneous Localization and Mapping)algorithm in dark texture environment,a monocular visual inertial SLAM algorithm based on dynamic point-line coupling is given in this paper.The dynamic threshold value of extracted line features is set to improve the utilization of line features,then the simi-larity of point and line feature positions is used to extract new point-line coupled features and construct a point-line coupled residual model,and the point-line coupled residuals are used to search the relationship between points and line features,and finally the point-line coupled residuals are integrated into the back-end sliding window optimization to construct a minimization cost function.The con-structed algorithm is simulated on the EuRoC public dataset,and the experimental results show that the designed algorithm reduces the localization error significantly compared with the VINS-Mono algorithm and the PL-VIO algorithm,which effectively enhances the ro-bustness and improves the localization accuracy of the system.

point-line fusiondynamic thresholdgeometric constraintssliding window optimization

吴桐、黄宜庆、张开平

展开 >

安徽工程大学电气工程学院,安徽 芜湖 241000

高端装备感知与智能控制教育部重点实验室,安徽 芜湖 241000

点线耦合 动态阈值 几何约束 滑动窗口优化

安徽省自然科学基金安徽省高校协同创新项目

2108085MF220GXXT-2020-069

2024

长春师范大学学报
长春师范学院

长春师范大学学报

CHSSCD
影响因子:0.312
ISSN:1008-178X
年,卷(期):2024.43(2)
  • 18