首页|融合局部最优划分长短期兴趣的序列推荐

融合局部最优划分长短期兴趣的序列推荐

扫码查看
序列推荐中划分用户的长期和短期兴趣非常重要.现有的序列推荐模型多简单预设短期兴趣长度,但性能提升不明显.为了更好地建模用户长短期兴趣,本文提出了一种融合局部最优划分长短期兴趣的序列推荐模型,采用了一种局部最优短期兴趣长度算法,自动和自适应搜索最优短期兴趣长度,并设计了 MLP层分别对长短期兴趣建模.在三个数据集上进行实验,结果表明运用该模型能够取得与最先进模型具有竞争力的性能.
A Sequential Recommendation with Local Optimal Partition Long-Short Term Interest
It is very important to identify both the user's long-term and short-term interest in sequential recommendation.Most of the existing models simply preset the short-term interest length,but the performance improvement is not obvious.For better model the user's long-term and short-term interest,this paper proposes a sequential reconmendation model with local optimal partition long-short term interest adopts a local optimal short-term interest length algorithm to automatically and adaptively search for the optimal short-term interest length,then designs an MLP layer to model long-term and short-term interests respectively.Through three experiments conduc-ted on a dataset,the model achieved competitive performance with the state-of-the-art models.

sequential recommendationMLPlong-short term interestlocal optimal

孙克雷、孙赛

展开 >

安徽理工大学计算机科学与工程学院,安徽淮南 232000

安徽理工大学人工智能学院,安徽淮南 232000

序列推荐 MLP 长短期兴趣 局部最优

国家自然科学基金项目安徽省重点研究与开发计划项目

620760062022AH050821

2024

长春师范大学学报
长春师范学院

长春师范大学学报

CHSSCD
影响因子:0.312
ISSN:1008-178X
年,卷(期):2024.43(6)