首页|基于自适应郊狼算法的四旋翼无人机编队航迹优化方法

基于自适应郊狼算法的四旋翼无人机编队航迹优化方法

扫码查看
四旋翼无人机编队需要在飞行过程中执行多项任务,而这些任务对编队航迹有不同的要求,导致编队需要花费更长的时间进行飞行,从而影响四旋翼无人机的运行寿命.本文提出了基于自适应郊狼算法的四旋翼无人机编队航迹优化方法.建立双坐标轴,分析四旋翼无人机编队受力情况,计算其姿态角度,构建四旋翼无人机编队运动学模型.根据四旋翼无人机编队的状态变量,设置约束条件.使用危险区对四旋翼无人机的排斥力函数,规划四旋翼无人机编队路径.采用自适应郊狼算法,减少四旋翼无人机编队的期望距离与实际距离之间的误差,实现四旋翼无人机编队航迹优化.实验结果表明,本文方法在优化后,无人机飞行时间平均为8 s,能够有效提高飞行效率,优化效果更好.
A Method of Quadrotor UAV Formation Track Optimization Based on Adaptive Coyote Algorithm
Quadrotor UAV formation will perform multiple tasks in the flight process,and these tasks have different requirements for the formation track,leading to the long flying expedition of the formation,thus affecting the operational life sapa of quadrotor UAV.Therefore,an adaptive coyote algorithm is proposed to optimize the tack of quadrotor UAV formation.We establish double corrdinate axes,analyze the force situation of the adrotor UAV formation,calculate its posture angle,and build the kinematics model of the quadrotor UAV formation.The constraints are set according to the state variables of the quadrotor UAV formation.Using the repulsive force function of danger zone a-gainst quadrotor UAV,the formation path of quadrotor UAV is planned.The adaptive coyote algorithm is used to reduce the error between the expected distance and the actual distance of the quadrotor UAV formation,and realize the track optimization of the quadrotor UAV for-mation.The experimental results show that the proposed method has an average flight time of 8 seconds after optimization,which can effec-tively improve flight efficiency and achieve better optimization results.

adaptive coyote algorithmquadrotor UAVunmanned aerial vehicle formationtrack optimization

杨智玲、程玮

展开 >

厦门海洋职业技术学院,福建厦门 361100

厦门市智慧渔业重点实验室,福建厦门 361100

自适应郊狼算法 四旋翼无人机 无人机编队 航迹优化

厦门海洋职业技术学院高层次人才研究项目中国高校产学研创新基金"新一代信息技术创新项目"福建省海洋经济发展专项资金项目

KYG2021012021ITA10012FJHJF-L-2021-12

2024

长春师范大学学报
长春师范学院

长春师范大学学报

CHSSCD
影响因子:0.312
ISSN:1008-178X
年,卷(期):2024.43(6)
  • 12