首页|基于梯度加权重构的一类五阶收敛改进牛顿迭代法

基于梯度加权重构的一类五阶收敛改进牛顿迭代法

扫码查看
经典牛顿迭代法是一种求解非线性方程在实数域及复数域上近似值的方法,可通过变上线积分函数推导实现.利用曲边梯形面积近似化得到四个变上线积分函数,通过梯度加权重构赋值得到一类五阶收敛的求解非线性方程近似根的改进牛顿迭代法,收敛性分析和数值实例验证该方法收敛速度较快,并且能够有效避免重根附近发散.该方法在非线性工程领域、经济领域和人工智能领域具有非常广泛的应用.
A Class of Improved Newton Iterative Methods with Fifth-Order Convergence Based on Gradient Weighted Reconstruction
The classical Newton iterative method is a way for solving nonlinear equations in the real and complex domains by approxima-ting the roots of nonlinear equations,which can be realized by deriving the integration functions on variable lines.The four integral func-tions are obtained by approximating the area of curved-edge trapezoid,and the improved Newton's iterative method for solving the ap-proximate roots of nonlinear equations with fifth-order convergence is obtained by the gradient-weighted reconstruction assignment.The convergence analysis and numerical examples verify that this method has a fast convergence rate and can effectively avoid divergence near multiple roots.It has a very wide range of applications in the field of nonlinear engineering,economics and artificial intelligence.

weightedfifth-order convergencenonlinear equationinimproved Newton iteration

郭巧、杨兵、吴昌广

展开 >

安徽职业技术学院计算机与信息技术学院,安徽 合肥 230611

安徽职业技术学院智能智造学院,安徽 合肥 230611

南京理工大学计算机学院,江苏南京 210094

加权 五阶收敛 非线性方程 改进牛顿迭代

2024

长春师范大学学报
长春师范学院

长春师范大学学报

CHSSCD
影响因子:0.312
ISSN:1008-178X
年,卷(期):2024.43(10)