首页|Copula层次化变分推理

Copula层次化变分推理

扫码查看
为提高Copula变分推理(CVI:Copula Variational Inference)的近似性能,提出了一种Copula层次化变分推理方法(CHVI:Copula Hierarchical Variational Inference)。该方法的主要思想是将CVI方法中的Copula函数与层次化变分模型(HVM:Hierarchical Variational Model)特殊的层次变分结构相结合,使HVM的变分先验服从CVI方法中的Copula函数。CHVI不但继承了 CVI中的Copula函数较强的捕获变量相关性的能力,而且还继承了 HVM的变分先验结构能获取模型隐变量依赖关系的优势,使CHVI可以更好地捕获隐变量之间的相关性,提高近似精度。利用基于经典的高斯混合模型验证CHVI方法,在合成数据集和实际应用数据集上的实验结果表明,CHVI方法的近似精度相较于CVI有较大提升。
Copula Hierarchical Variational Inference
In order to improve the approximate performance of CVI(Copula Variational Inference),the CHVI(Copula Hierarchical Variational Inference)method is proposed.The main idea of this method is to combine the Copula function in the CVI method with the special hierarchical variational structure of the HVM(Hierarchical Variational Model),so that the variational prior of the HVM obeys the Copula function in the CVI method.CHVI not only inherits the strong ability of the Copula function in CVI to capture the correlation of variables,but also inherits the advantage of the variational prior structure of HVM to obtain the dependencies of the hidden variables of the model,so that CHVI can better capture the relationship between hidden variables.correlation to improve the approximation accuracy.The author validates the CHVI method based on the classical Gaussian mixture model.The experimental results on synthetic datasets and practical application datasets show that the approximate accuracy of the CHVI method is greatly improved compared to the CVI method.

variational inferenceCopula functionhierarchycorrelation

欧阳继红、曹竞月、王腾

展开 >

吉林大学计算机科学与技术学院,长春 130012

吉林大学教育部符号计算与知识工程重点实验室,长春 130012

变分推理 Copula函数 层次化 相关性

国家自然科学基金资助项目

61876071

2024

吉林大学学报(信息科学版)
吉林大学

吉林大学学报(信息科学版)

CSTPCD
影响因子:0.607
ISSN:1671-5896
年,卷(期):2024.42(1)
  • 22