首页|基于UNet++卷积神经网络的断层识别

基于UNet++卷积神经网络的断层识别

扫码查看
针对传统相干体属性和机器学习在复杂断裂识别能力差的问题,提出一种基于UNet++卷积神经网络的断层识别方法。该方法采用加权交叉熵损失函数做目标函数,使网络模型训练过程中避免了数据样本不平衡的问题,引入注意力机制和密集卷积块,以及更多的跳跃连接,更好地实现深层次断层语义信息和浅层次断层空间信息之间的特征融合,进而可以使UNet++网络模型更好地实现断层识别。实验结果表明,该网络模型将F1值提高到了 92。38%,loss降低到0。012 0,可以更好地学习断层特征信息。将该模型应用于西南庄断层的识别中,结果表明,该方法可以更准确预测断层位置,在识别连续断层的准确率上有所提高,有效防止了地下噪音对于断层识别的不利影响,从而验证了 UNet++网络模型在断层识别上具有一定的研究价值。
Fault Recognition Based on UNet++Network Model
Fault identification plays an important role in geological exploration,reservoir description,structural trap and well placement.Aiming at the problem that traditional coherence attribute and machine learning are poor in complex fault recognition,a fault recognition method based on UNet++convolutional neural network is proposed.The weighted cross entropy loss function is used as the objective function to avoid the problem of data sample imbalance in the training process of the network model.Attention mechanism and dense convolution blocks are introduced,and more jump connections are introduced to better realize the feature fusion between the semantic information of deep faults and the spatial information of shallow faults.Furthermore,the UNet++network model can realize fault identification better.The experimental results show that theF1value increased to 92.38%and the loss decreased to 0.012 0,which can better learn fault characteristic information.The model is applied to the identification of the XiNanZhuang fault.The results show that this method can accurately predict the fault location and improve the fault continuity.It is proved that the UNet++network model has certain research value in fault identification.

fault identificationUNet++network modelweighted cross entropy loss functionattention mechanismfeature fusion

安志伟、刘玉敏、袁硕、魏海军

展开 >

东北石油大学电气信息工程学院,黑龙江大庆 163318

重庆科技学院电气工程学院,重庆 401331

断层识别 UNet++网络模型 加权交叉熵损失函数 注意力机制 特征融合

黑龙江省自然科学基金资助项目

TD2019D001

2024

吉林大学学报(信息科学版)
吉林大学

吉林大学学报(信息科学版)

CSTPCD
影响因子:0.607
ISSN:1671-5896
年,卷(期):2024.42(1)
  • 15