首页|基于并行小波算法的多模态数据近似匹配模型构建

基于并行小波算法的多模态数据近似匹配模型构建

扫码查看
针对近似匹配过程易受数据冗余性、异构成分等的影响,提出了基于并行小波算法的多模态数据近似匹配模型。该模型首先采用并行小波算法剔除多模态数据中的噪声,避免噪声对匹配过程产生影响;其次采用张量分解的聚类算法将不同相似度的数据划分到不同类簇中,以消除不同类簇的数据差异度;最后将预处理后的数据输入到基于空间方向近似性的数据匹配模型中,通过计算参考数据与待匹配数据之间的空间方向近似度、编辑距离完成多模态数据的近似匹配。实验结果表明,所提方法的匹配查准率高、查全率高、匹配时间短。
Construction of Multimodal Data Approximate Matching Model Based on Parallel Wavelet Algorithm
Approximate matching is an indispensable link in the normal use of multimodal data technology,but the process of approximate matching is vulnerable to data redundancy,heterogeneous components and other issues.Firstly,parallel wavelet algorithm is used to eliminate the noise in multimodal data to avoid the impact of noise on the matching process.Secondly,tensor decomposition clustering algorithm is used to divide the data with different similarity into different clusters to eliminate the data difference of different clusters.Finally,the preprocessed data is input into the data matching model based on spatial direction approximation,The approximate matching of multimodal data is completed by calculating the spatial direction approximation and editing the distance between the reference data and the data to be matched.The experimental results show that the proposed method has high matching precision,high recall and short matching time.

dual input output parallel architecturedata differencetensor decompositionspatial direction approximationmatching similarity

刘丽丽

展开 >

黑龙江中医药大学药学院,哈尔滨 150036

双输入-输出的并行结构 数据差异度 张量分解 空间方向近似性 匹配相似度

黑龙江省自然科学基金资助项目

TD2018D003

2024

吉林大学学报(信息科学版)
吉林大学

吉林大学学报(信息科学版)

CSTPCD
影响因子:0.607
ISSN:1671-5896
年,卷(期):2024.42(1)
  • 15