首页|基于EM-KF算法的微地震信号去噪方法

基于EM-KF算法的微地震信号去噪方法

扫码查看
针对微地震信号能量较弱,噪声较强,使微地震弱信号难以提取问题,提出了一种基于EM-KF(Expectation Maximization Kalman Filter)的微地震信号去噪方法。通过建立一个符合微地震信号规律的状态空间模型,并利用EM(Expectation Maximization)算法获取卡尔曼滤波的参数最优解,结合卡尔曼滤波,可以有效地提升微地震信号的信噪比,同时保留有效信号。通过合成和真实数据实验结果表明,与传统的小波滤波和卡尔曼滤波相比,该方法具有更高的效率和更好的精度。
Microseismic Signal Denoising Method Based on EM-KF Algorithm
Microseismic monitoring technology has been widely used in unconventional oil and gas development.The microseismic signal has weak energy and strong noise,which makes the follow-up work difficult and requires high-precision and accurate data.To solve the problem of extracting weak microseismic signals,an EM-KF(Expectation Maximization Kalman Filter)-based method is proposed for denoising microseismic signals.By establishing a state space model that conforms to the laws of microseismic signals and using the EM(Expectation Maximization)algorithm to obtain the optimal solution of the parameters for the Kalman filter,the signal-to-noise ratio of microseismic signals can be effectively improved while retaining the effective signals.The experimental results of synthetic data and real data show that this method has higher efficiency and better accuracy than traditional wavelet filtering and Kalman filtering.

microseismexpectation maximization(EM)algorithmKalman filtersignal to noise ratio

李学贵、张帅、吴钧、段含旭、王泽鹏

展开 >

东北石油大学 计算机与信息技术学院,黑龙江大庆 163318

东北石油大学 人工智能能源研究院,黑龙江大庆 163318

东北石油大学 黑龙江省石油大数据与智能分析实验室,黑龙江大庆 163318

大庆油田有限责任公司勘探开发研究院,黑龙江大庆 163712

展开 >

微地震 EM算法 卡尔曼滤波 信噪比

国家自然科学基金中国石油科技重大专项黑龙江省揭榜挂帅科技攻关基金黑龙江省自然科学基金联合引导基金

U21A20192021ZZ10DQYT-2022-JS-750LH2022F008

2024

吉林大学学报(信息科学版)
吉林大学

吉林大学学报(信息科学版)

CSTPCD
影响因子:0.607
ISSN:1671-5896
年,卷(期):2024.42(2)
  • 24