首页|基于BOA-SSA-BP神经网络的充电桩故障诊断方法

基于BOA-SSA-BP神经网络的充电桩故障诊断方法

扫码查看
针对电动汽车直流充电桩故障多发且难以精准诊断的问题,提出一种基于改进反向传播神经网络(BP:Back Propagation)的充电桩故障诊断方法。首先,对充电桩的运行数据集归一化、缺失值填充等预处理,将处理后的数据集输入BP模型中进行训练;其次,引入基于蝴蝶优化算法改进的麻雀搜索算法,对BP模型的权值和阈值进行寻优,得到最优化模型;最后,基于优化后的BP模型对充电桩的故障状态进行诊断。仿真结果表明,在平均绝对误差、平均绝对百分比误差、均方根误差等方面均具有良好的计算优势,相比传统BP算法的诊断精度,所提出的改进BP方法提升了 14。85%,能较为准确地诊断充电桩的状态,为电动汽车故障诊断提供有力保障。
Fault Diagnosis Method of Charging Pile Based on BOA-SSA-BP Neural Network
To address the issue of frequent faults in direct current electric vehicle charging piles and the difficulty of precise diagnosis,a fault diagnosis method based on an improved BP(Back Propagation)neural network is proposed.Firstly,the operation data set of the charging pile is preprocessed,such as normalization and filling in missing values,and the processed data set is input into the BP model for training.Secondly,an optimization method based on the BOA-SSA(Butterfly Optimization Algorithm improved Sparrow Search Algorithm)is introduced to optimize the weights and thresholds of the BP model to obtain the optimal model.Finally,the fault status of the charging pile is diagnosed based on the optimized BP model.The simulation results show that the proposed BP method has good computational advantages in terms of MAE(Mean Absolute Error),MAPE(Mean Absolute Percentage Error),and RMSE(Root Mean Square Error).Compared to the traditional BP algorithm,the diagnostic accuracy of the improved BP method has increased by 14.85%,which can diagnose the state of the charging pile accurately,providing a strong guarantee for the fault diagnosis of electric vehicles.

charging pilefault diagnosisneural networksparrow search algorithmbutterfly optimization algorithm

茆敏、窦真兰、陈良亮、杨凤坤、刘鸿鹏

展开 >

东北电力大学 电气工程学院,吉林吉林 132012

东北电力大学 现代电力系统仿真控制与绿色电能新技术教育部重点实验室,吉林吉林 132012

国网上海市电力公司国网上海综合能源服务有限公司,上海 200433

国网电力科学研究院有限公司国电南瑞科技股份有限公司,南京 211106

展开 >

充电桩 故障诊断 神经网络 麻雀搜索算法 蝴蝶优化算法

国家电网科技基金

52094021N00S

2024

吉林大学学报(信息科学版)
吉林大学

吉林大学学报(信息科学版)

CSTPCD
影响因子:0.607
ISSN:1671-5896
年,卷(期):2024.42(2)
  • 15