首页|基于BP神经网络的睡眠质量监测管理系统设计

基于BP神经网络的睡眠质量监测管理系统设计

扫码查看
针对准确提取多阶段睡眠特征的难度较大,导致睡眠质量监测准确性较差的问题,提出了基于BP(Back Propagution)神经网络的睡眠质量监测管理系统。根据睡眠生理学基础知识,分析人体睡眠时期生理活动过程中的压力变化,设计无线采集控制、睡眠质量特征提取和睡眠质量监测管理模块,实现睡眠质量监测管理系统硬件设计。分析睡眠阶段脑电信号的特性,引入BP神经网络提取睡眠特征,获取睡眠时期的时频和非线性特征,通过与硬件模块之间的相互协作,完成睡眠质量监测管理系统设计。经实验测试结果表明,采用所设计系统能获取更加满意的睡眠质量监测管理结果,且系统耗电量较低。
Design of Sleep Quality Monitoring and Management System Based on BP Neural Network
The sleep quality characteristics of different sleep stages are different,and it is difficult to accurately extract the multi-stage sleep characteristics,resulting in poor accuracy of sleep quality monitoring.Therefore,a sleep quality monitoring management system based on BP(Back Propagution)neural network is designed.According to the basic knowledge of sleep physiology,the pressure changes in the process of physiological activities during human sleep is analyzed,wireless acquisition and control module,sleep quality feature extraction module,sleep quality monitoring and management module are designed,and the hardware design of sleep quality monitoring and management system are realized.The characteristics of EEG(Electroencephalogram)signals in sleep phase is analyzed,BP neural network is introduced to extract sleep characteristics,time-frequency and nonlinear characteristics in sleep phase are acquired,and the design of sleep quality monitoring and management system is completed through mutual cooperation with hardware modules.The experimental results show that the designed system can achieve more satisfactory sleep quality monitoring and management results,and the system power consumption is low.

back propagution(BP)neural networksleep qualitymonitoring management systemfeature extraction

高晨

展开 >

西安文理学院机械与材料工程学院,西安 710065

BP神经网络 睡眠质量 监测管理系统 特征提取

西安市科技计划高校院所科技人员服务企业基金资助项目

2022JH-RYFW-0210

2024

吉林大学学报(信息科学版)
吉林大学

吉林大学学报(信息科学版)

CSTPCD
影响因子:0.607
ISSN:1671-5896
年,卷(期):2024.42(3)
  • 9