首页|基于混合策略的蜣螂优化算法研究

基于混合策略的蜣螂优化算法研究

扫码查看
针对蜣螂优化算法存在易陷入局部最优、全局探索和局部开发能力不平衡等问题,为提升蜣螂优化算法的寻优能力,提出一种混合策略的蜣螂优化算法。采用Sobol序列初始化种群,以使蜣螂种群更好地遍历整个解空间;在滚球蜣螂位置更新阶段加入黄金正弦算法,提高收敛速度和寻优精度;引入混合变异算子进行扰动,提高算法跳出局部最优的能力。对改进的算法进行8个基准函数的测试,并与灰狼优化算法、鲸鱼优化算法和蜣螂优化算法等进行比较,并验证了3种改进策略的有效性。结果表明,混合策略的蜣螂优化算法在收敛速度、鲁棒性和寻优精度有明显增强。
Research on Dung Beetle Optimization Algorithm Based on Mixed Strategy
The dung beetle optimization algorithm suffers from the problems of easily falling into local optimum,imbalance between global exploration and local exploitation ability.In order to improve the searching ability of the dung beetle optimization algorithm,a mixed-strategy dung beetle optimization algorithm is proposed.The Sobol sequence is used to initialize the population in order to make the dung beetle population better traverse the whole solution space.The golden sine algorithm is added to the ball-rolling dung beetle position updating stage to improve the convergence speed and searching accuracy.And the hybrid variation operator is introduced for perturbation to improve the algorithm's ability to jump out of the local optimum.The improved algorithms are tested on eight benchmark functions and compared with the gray wolf optimization algorithm,the whale optimization algorithm and the dung beetle optimization algorithm to verify the effectiveness of the three improved strategies.The results show that the dung beetle optimization algorithm with mixed strategies has significant enhancement in convergence speed,robustness and optimization search accuracy.

dung beetle optimizerSobol sequencegolden sine algorithmmix mutation operator

秦喜文、冷春晓、董小刚

展开 >

长春工业大学数学与统计学院,长春 130012

长春工业大学大数据科学研究院,长春 130012

蜣螂优化算法 Sobol序列 黄金正弦算法 混合变异算子

国家自然科学基金资助项目吉林省科技厅基金资助项目吉林省科技厅基金资助项目

1202643020200403182SF20210101149JC

2024

吉林大学学报(信息科学版)
吉林大学

吉林大学学报(信息科学版)

CSTPCD
影响因子:0.607
ISSN:1671-5896
年,卷(期):2024.42(5)