首页|基于人体关键点的滑雪动作评分方法研究

基于人体关键点的滑雪动作评分方法研究

扫码查看
针对使用传统方法识别评估滑雪运动员的训练动作存在人为主观、准确率低等问题,提出了一种基于改进OpenPose 和 YOLOv5(You Only Look Once version 5)的动作分析算法。利用 CSP-Darknet53(Cross Stage Paritial-Network 53)作为OpenPose外部网络将输入图片降维处理并提取特征图。融合优化YOLOv5算法,提取人体骨骼关键点构成人体骨架与标准动作进行对比,根据角度信息评分,并在模型中加入损失函数,量化实际检测动作与标准动作的误差。该模型可对运动员动作即时监控,能完成初步的动作评估。实验结果表明,检测识别准确率达到95%,可满足日常滑雪训练需求。
Research on Scoring Method of Skiing Action Based on Human Key Points
The training actions of skiing athletes can directly reflect their level,but traditional methods for identifying and evaluating actions have shortcomings such as subjectivity and low accuracy.To achieve accurate analysis of skiing posture,a motion analysis algorithm based on improved OpenPose and YOLOv5(You Only Look Once version 5)is proposed to analyze athletes'movements.There are two main improvements.First,CSP-Darknct53(Cross Stage Paritial-Network 53)is used as the external network for OpenPose to reduce the dimension of the input image and extract the feature map.Then,the YOLOv5 algorithm is fused to optimize it.The key points of the human skeleton are extracted to form the human skeleton and compared with the standard action.According to the angle information,the loss function is added to the model to quantify the error between the actual detected action and the standard action.This model achieves accurate and real-time monitoring of athlete action evaluation in training scenarios and can complete preliminary action evaluation.The experimental results show that the detection and recognition accuracy reaches 95%,which can meet the needs of daily skiing training.

OpenPoseyou only look Once version 5(YOLOv5)deep learningskiing movement analysisloss function

梅健、孙珈玥、邹青宇

展开 >

吉林化工学院信息与控制工程学院,吉林吉林 132022

北华大学电气与信息工程学院,吉林吉林 132021

OpenPose算法 YOLOv5算法 深度学习 滑雪动作分析 损失函数

吉林省高等教育教学改革研究基金资助项目吉林省教育厅科学研究基金资助项目吉林市科技创新发展计划基金资助项目国家大学生创新创业训练计划基金资助项目

JLJY202377910357JJKH20230065KJ20210103098202210201055

2024

吉林大学学报(信息科学版)
吉林大学

吉林大学学报(信息科学版)

CSTPCD
影响因子:0.607
ISSN:1671-5896
年,卷(期):2024.42(5)