首页|基于SIFT特征点提取算法的三维数字影像重建方法

基于SIFT特征点提取算法的三维数字影像重建方法

扫码查看
针对在数字影像三维重建过程中,由于原始数据中存在噪声和失真等不足,导致特征匹配效率和精度较低的问题,提出基于SIFT(Scale-Invariant Feature Transform)特征点提取算法的三维数字影像重建方法。采用双边滤波算法对数字影像中的环境噪声实施消除处理,并保留数字影像的边缘信息,提高特征点提取精度;通过尺度不变特征转换(SIFT)算法对其提取特征点,得到数字影像的特征点对;将该特征点对作为初始面片,利用空间目标多视影像密集匹配方法,实现对数字影像的三维重建。实验结果表明,所提方法特征匹配效率和匹配精度高,且降噪能力强,生成的三维重建影像所需平均时间为26。74 ms。
Research on Method of Engine Fault Diagnosis Based on Improved Minimum Entropy Deconvolution
In the process of 3D reconstruction of digital images,problems such as noise and distortion in the original data lead to low efficiency and accuracy of feature matching.To address this issue,a 3D digital image reconstruction method based on SIFT(Scale-Invariant Feature Transform)feature point extraction algorithm is proposed.The Bilateral filter algorithm is used to eliminate the environmental noise in the digital image,retain the edge information of the digital image,and improve the accuracy of feature point extraction.The SIFT algorithm is used to obtain feature point pairs.Using this feature point pair as the initial patch,a dense matching method for spatial object multi view images is used to achieve 3D reconstruction of digital images.The experimental results show that the proposed method has high feature matching efficiency and accuracy and strong noise reduction ability.The average time required for generating 3D reconstructed images is 26.74 ms.

scale invariant feature transform(SIFT)algorithmbilateral filterdenoisingfeature matchingthree-dimensional reconstruction

李静

展开 >

文华学院城市建设工程学部,武汉 430074

SIFT算法 双边滤波 去噪 特征匹配 三维重建

湖北省教育厅科学研究计划基金资助项目

B2017403

2024

吉林大学学报(信息科学版)
吉林大学

吉林大学学报(信息科学版)

CSTPCD
影响因子:0.607
ISSN:1671-5896
年,卷(期):2024.42(5)