首页|改进决策树算法的大数据分类优化方法

改进决策树算法的大数据分类优化方法

扫码查看
针对当前海量数据的结构和特征较为复杂,对其分类时很难确保较高的精准度与效率的问题,提出了改进决策树算法的大数据分类优化方法。构建模糊决策函数检测大数据的序列特征,并将其输入决策树模型中挖掘和训练规则;利用灰狼优化算法改进决策树模型,使用改进后模型对大数据简化、粗略分类,再建立分类器准确度目标函数,实现对大数据的精准分类。实验结果表明,所提方法取得分类结果准确度最高、假正例率最低,保证了算法整体具有较高的吞吐量,提高了算法分类效率。
Improved Decision Tree Algorithm for Big Data Classification Optimization
Due to the complex structure and features of current massive data,big data exhibits unstructured and small sample characteristics,making it difficultto ensure high accuracy and efficiency in its classification.Therefore,a big data classification optimization method is proposed to improve the decision tree algorithm.A fuzzy decision function is constructed to detect sequence features of big data,and these features inputted into a decision tree model to mine and train rules.The decision tree model is improved using grey wolf optimization algorithm.The big data is classified using the improved model,and then a classifier accuracy objective function is established to achieve accurate classification of big data.The experimental results show that the proposed method achieves the highest accuracy in classification results and the lowest false positive case rate,ensuring the overall high throughput of the algorithm and improving its classification efficiencv.

decision tree modelgrey wolf optimization algorithmobjective functionbig data classificationfuzzy decision function

唐灵逸、唐怡雯、李蓓蓓

展开 >

上海交通大学医学院附属仁济医院 上海 200127

上海市卫生健康委员会办公室(信息化管理处),上海 200125

上海市静安区临汾路街道社区卫生服务中心,上海 200435

决策树模型 灰狼优化算法 目标函数 大数据分类 模糊决策函数

上海市自然科学基金资助项目

16GR137510

2024

吉林大学学报(信息科学版)
吉林大学

吉林大学学报(信息科学版)

CSTPCD
影响因子:0.607
ISSN:1671-5896
年,卷(期):2024.42(5)