首页|基于强化学习的无人机航线规划研究

基于强化学习的无人机航线规划研究

扫码查看
为解决无人机的低通信能耗比问题,并在维持高通信质量的同时降低能耗,提出了一种基于强化学习的无人机航线规划方案。将连续的飞行空间划分为多层二维网格以便于生成无人机状态点,并建立一个基于通信质量和能耗参数的奖励函数,通过Q-Learning算法学习获得通信能耗比最优航线。实验结果表明,该学习模型规划的航线能获得较高的通信能耗比,具有一定应用价值。
Research on UAV Route Planning Based on Reinforcement Learning
The energy consumption of a UAV(Unmanned Aerial Vehicle)determines the length of its operational cycle.To address the issue of low communication-to-energy consumption ratio,a reinforcement learning-based UAV path planning solution is proposed to reduce energy consumption while maintaining high communication quality.The continuous flight space is divided into multi-layer two-dimensional grids to facilitate the generation of UAV state points,and a reward function based on communication quality parameters and energy consumption parameters is established.The Q-Learning algorithm is employed to learn and obtain the path with the optimal communication-to-energy consumption ratio.Experimental results show that the path planned by this learning model can achieve a higher communication-to-energy consumption ratio,demonstrating its practical value.

route planningQ-Learning algorithmunmanned aerial vehicle

何庆新、涂晓彬、于银辉

展开 >

闽南理工学院信息工程学院,福建泉州 362242

吉林大学通信工程学院,长春 130012

航线规划 Q-Learning算法 无人机

2024

吉林大学学报(信息科学版)
吉林大学

吉林大学学报(信息科学版)

CSTPCD
影响因子:0.607
ISSN:1671-5896
年,卷(期):2024.42(6)