首页|IRS辅助C-IoT系统的联合波束形成设计

IRS辅助C-IoT系统的联合波束形成设计

扫码查看
针对多输入多输出(MIMO:Multiple Input Multiple Output)认知物联网(C-IoT:Cognitive Internet of Things)系统中存在频谱效率低的问题,提出了一种基于智能反射面(IRS:Intelligent Reflecting Surface)辅助的交替迭代的块坐标下降算法。以主接收机处的干扰功率、次发射机处的发射功率和IRS处的单位模为约束条件,通过联合优化次发射机处的主动波束形成和IRS处的被动波束形成最大化系统加权和速率。将复杂的非凸优化问题分解为子问题后,分别使用拉格朗日对偶法和逐次凸逼近法对子问题进行处理。仿真结果表明,在多天线用户场景下所提算法可以快速收敛,通过增加IRS反射元件的数量或正确部署IRS的位置可以有效提高C-IoT系统的频谱效率。
Joint Beamforming Design for IRS-Assisted C-IoT System
Aiming at the problem of low spectrum efficiency in MIMO(Multiple Input Multiple Output)C-IoT(Cognitive Internet of Things)systems,a block coordinate descent algorithm based on alternating iterative assisted by IRS(Intelligent Reflecting Surface)is proposed.System weighted sum rate is maximized by jointly optimizing active beamforming at secondary transmitter and passive beamforming at IRS,and is constrained by the interference power at the primary receiver,the transmit power at the secondary transmitter,and the unit mode at the IRS.After decomposing the complex non-convex optimization problem into subproblems,the subproblems are processed using the Lagrange Dual method and the Successive Convex Approximation method,respectively.The simulation results show that the proposed algorithm can converge quickly in a multi-antenna user scenario,and the spectrum efficiency of the C-IoT system can be effectively improved by increasing the number of IRS reflective elements or correctly deploying the location of the IRS.

intelligent reflecting surfacecognitive internet of thingsmultiple input multiple output(MIMO)beamforming

孙振兴、沙国辉、南春萍、胥子昂、李雪峰

展开 >

东北石油大学秦皇岛校区电气信息工程系,河北秦皇岛 066004

东北石油大学电气信息工程学院,黑龙江大庆 163318

东北石油大学秦皇岛校区基础部,河北秦皇岛 066004

智能反射面 认知物联网 多输入多输出 波束形成

2024

吉林大学学报(信息科学版)
吉林大学

吉林大学学报(信息科学版)

CSTPCD
影响因子:0.607
ISSN:1671-5896
年,卷(期):2024.42(6)