首页|基于随机森林算法的飞行员脑力负荷多维综合评估模型

基于随机森林算法的飞行员脑力负荷多维综合评估模型

扫码查看
针对飞行员在执行任务时需要同时处理多种信息源和任务,加重了脑力劳动负荷的问题,为提高飞行安全性和飞行员的工作效能,研究了基于随机森林算法的飞行员脑力负荷多维综合评估模型。利用线性有限脉冲响应带通滤波器处理脑电信号,剔除高频及低频噪音,计算失匹配负波,获得线性插值脑电信号采样点,根据脑电信号邻域重叠采样点,提取各节律的功率谱密度和能量特征。构建随机森林算法多维综合评估模型,确定各信号波动频率输出点,结合投票模式获得多维脑力负荷最佳的分类结果,实现飞行员脑力负荷综合评估。实验结果证明,所提方法具有较高的分类精度,能精准评估飞行员脑力负荷状态。
Multidimensional Comprehensive Evaluation Model of Pilots'Mental Workload Based on Random Forest Algorithm
Pilots need to simultaneously process multiple information sources and tasks while performing tasks,which increases the workload of mental labor.In order to improve flight safety and pilot work efficiency,a multidimensional comprehensive evaluation model for pilot mental workload based on random forest algorithm is studied.A linear finite pulse response bandpass filter is used to process EEG(Electroencephalogram)signals,removing high-frequency and low-frequency noise,calculating mismatched negative waves,obtaining linearly interpolated EEG signal sampling points,and extracting power spectral density and energy features of each rhythm based on overlapping sampling points in the EEG signal neighborhood.A multi-dimensional comprehensive evaluation model of the random forest algorithm is constructed,determine the output points of each signal fluctuation frequency,and combine the voting mode to obtain the optimal classification results of multi-dimensional mental load,achieving comprehensive evaluation of pilot mental load.The experimental results demonstrate that the proposed method has high classification accuracy and can accurately evaluate the mental workload status of pilots.

random forest algorithmbrain loadmultidimensional comprehensive evaluationpower spectral densitymismatched negative wave

韩磊

展开 >

解放军总医院第六医学中心特勤科,北京 100038

随机森林算法 脑力负荷 多维综合评估 功率谱密度 失匹配负波

2024

吉林大学学报(信息科学版)
吉林大学

吉林大学学报(信息科学版)

CSTPCD
影响因子:0.607
ISSN:1671-5896
年,卷(期):2024.42(6)