首页|基于改进鲸鱼优化算法的测试性优化分配方法

基于改进鲸鱼优化算法的测试性优化分配方法

扫码查看
传统的测试性分配方法无法解决多目标优化问题,因此将费用函数和分配模型相结合,求解在各影响因素情况下费用最少问题,提出一种基于自适应权重的鲸鱼优化算法(SIN-WOA).该算法通过增加自适应权重系数来增强算法的局部寻优能力,提高收敛速度.最后,选取实际案例运用综合加权分配法确定各影响因素的权重值和系数,选取故障检测率(FDR)进行指标分配对比.结果表明:改进鲸鱼优化算法能够解决多目标优化问题,并且收敛速度较快,求解精度较高.
Testability Optimal Allocation Method Based on Improved Whale Optimisation Algorithm
The traditional testability assignment method can not solve the multi-objective optimization problem.Therefore,a whale optimization algorithm based on adaptive weights(SIN-WOA)is proposed to solve the problem of minimum cost under various influencing factors by combining the cost function and allocation model.By increasing the adaptive weight coefficient,the local opti-mization ability of the algorithm is enhanced and the convergence speed is improved.Finally,a practical case is selected to determine the weight value and coefficient of each influencing factor by comprehensive weighted distribution method,and fault detection rate(FDR)is selected for index distribution and comparison.The results show that the improved whale optimization algorithm can solve the multi-objective optimization problem,the convergence speed is fast and the solving precision is high.

testability optimal allocationwhale optimization algorithmpenalty functionadaptive weight

何健夫、赵国扬、郑晓霞

展开 >

成都航空职业技术学院,成都 610100

测试性优化分配 鲸鱼优化算法 惩罚函数 自适应权重

人工智能四川省重点实验室开放基金四川省无人系统智能感知控制技术工程实验室项目

2021RYY02WRXT2023-001

2024

成都航空职业技术学院学报
成都航空职业技术学院

成都航空职业技术学院学报

影响因子:0.357
ISSN:1671-4024
年,卷(期):2024.40(2)
  • 8