首页|融合传递机理的履带车辆系统级振动状态关联模型研究

融合传递机理的履带车辆系统级振动状态关联模型研究

扫码查看
针对履带车辆的振动预测,提出了一种融合传递机理的履带车辆系统级振动状态关联模型.首先对履带车辆的结构进行分析,明确振动传递路径并提出多层次关联模型架构;然后结合深度学习技术构建关联模型,并通过关键位置激励载荷参数筛选对模型进行优化;最后使用真实车辆振动数据集进行振动状态预测.结果表明,与未融合传递机理的关联模型相比,融合传递机理的履带车辆振动关联模型在6个振动指标的预测精度上均获得提升,证明了融合传递机理的振动预测方法的有效性.
Research on the System Level Vibration State Correlation Model for Tracked Vehicles Fusing Transmission Mechanisms
For vibration prediction of tracked vehicles,a system-level vibration state correlation model fu-sing transmission mechanisms is proposed.Firstly,based on the structure of tracked vehicles,the vibration transmission path is clarified,and a multi-level correlation model architecture is determined.Then,the correlation model is constructed using deep learning approaches and optimized by selecting key position ex-citation load parameters.Finally,real vehicle vibration dataset is used for vibration state prediction.Com-pared with the method without fusing transmission mechanisms,the proposed correlation model fusing transmission mechanisms improves the prediction accuracy of six vibration indicators,which verifies the ef-fectiveness of the vibration prediction method fusing transmission mechanism.

vibration transmissioncorrelation modeldeep learningparameter selection

邵昊南、李元芾、张会生

展开 >

上海交通大学动力机械及工程教育部重点实验室,上海 200240

振动传递 关联模型 深度学习 参数筛选

2024

传动技术
上海交通大学

传动技术

影响因子:0.197
ISSN:1006-8244
年,卷(期):2024.38(1)
  • 16