首页|基于MPSO-BP算法的四电极电化学气体传感器温度补偿研究

基于MPSO-BP算法的四电极电化学气体传感器温度补偿研究

扫码查看
针对四电极电化学气体传感器的测量精度极易受环境温度影响的问题,提出一种基于粒子群优化BP神经网络算法(PSO-BP)的温度补偿方法.利用改进的PSO算法(MPSO)对BP神经网络的权值和阈值进行优化,构造四电极电化学气体传感器的温度补偿模型,并设计了气体传感器测试系统.实验结果表明,MPSO-BP算法可有效提高BP神经网络的收敛速度和泛化能力;基于MPSO-BP算法的四电极气体传感器温度补偿模型,可将温度补偿误差控制在 0.1%以内.
Temperature Compensation of Four-Electrode Electrochemical Gas Sensors Based on MPSO-BP Algorithm
In order to solve the problem that the measurement accuracy of four-electrode electrochemical gas sensor is easily affected by ambient temperature,a temperature compensation method based on particle swarm optimization BP neural network algorithm(PSO-BP)is proposed.The modified PSO algorithm(MPSO)is used to optimize the weight and threshold of BP neural network and the temperature compensation model of four-electrode electrochemical gas sensor is constructed.The test system of gas sensor is also designed.The ex-perimental results show that MPSO-BP algorithm can effectively improve the convergence speed and generalization ability of BP neural network.The temperature compensation model of four-electrode gas sensor based on MPSO-BP algorithm can control the temperature compensation error within 0.1%.

temperature compensationelectrochemical gas sensorsparticle swarm optimizationBP neural networkfour-electrode

刘伟、鲁露、杨文博、赵曼玉、魏广芬

展开 >

山东工商学院信息与电子工程学院,山东 烟台 264005

山东省高校感知技术与控制重点实验室,山东 烟台 264005

温度补偿 电化学气体传感器 粒子群优化 BP神经网络 四电极

烟台市科技创新发展计划项目

2022XDRH015

2024

传感技术学报
东南大学 中国微米纳米技术学会

传感技术学报

CSTPCD北大核心
影响因子:1.276
ISSN:1004-1699
年,卷(期):2024.37(1)
  • 12