首页|MS-2HCNN:基于深度学习的高光谱图像信号分类方法

MS-2HCNN:基于深度学习的高光谱图像信号分类方法

扫码查看
为了能更准确地提取与合并高光谱图像信号中的空间与光谱特征,提出了一种 MS-2HCNN 结构(Multi Stage-Heightened&Hyperspectral convolutional neural network).MS-2HCNN通过融合不同的卷积层结果获得了更具判别性的特征,还通过将提取到的光谱和空间信息进行了串接,简化了计算,保证了准确性和可靠的分类性能.此外,提出的多阶段设计可以将上层获得的背景信息与下层获得的精确空间信息相结合,使得它在准确性和复杂度方面比现有的方法更有优势.最后,为了应对样本特征比问题,引入了复杂度更优、精度更好的网络优化器,加之采用的批量归一化方法减少了MS-2HCNN的模型参数并提高了其拟合能力.在不同开源数据集上的分类结果表明了所提方法的有效性.
MS-2HCNN:Hyperspectral Imagery Signal Classification Method Based on Deep Learning
In order to extract and combine space in hyperspectral imagery signals more accurately,an MS-2HCNN structure(Multi Stage-Heightened&Hyperspectral convolutional neural network(MS-2HCNN)is proposed,which obtains more discriminative features by com-bining the results of different convolutional layers,generates a large number of features after dynamic merging,connects the extracted spectral and spatial information in series,simplifies the calculation,and ensures the accuracy and reliable classification performance.The method improves the classification performance by using existing feature combination techniques.In addition,for the proposed multi-stage design,the background information obtained by the upper layer can be combined with the precise spatial information ob-tained by the lower layer,makes it have more advantages than the existing methods in terms of accuracy and complexity.Finally,network optimizer with better complexity and precision is introduced,and batch normalization is adopted,reducing the number of parameters and improving the fitting ability of the MS-ZHENN model.The clussification results on different open source datasets show the validity of the proposed method.

artificial intelligencespatial characteristicsspectral characteristicsconvolutional neural network

吕龙龙、卢伟、秦丽娜

展开 >

运城职业技术大学信创学院,山西 运城 044000

人工智能 空间特征 光谱特征 卷积神经网络

2020年度教育科学"十三五"规划项目

HLW-20224

2024

传感技术学报
东南大学 中国微米纳米技术学会

传感技术学报

CSTPCD北大核心
影响因子:1.276
ISSN:1004-1699
年,卷(期):2024.37(1)
  • 6